Telegram Group & Telegram Channel
кружочек
срочно в номер! в среду состоится внеочередное заседание кружочка! приезжайте кто успеет [9 октября (СРЕДА), 16:15, ауд. 302] Андрей Рябичев, "Константа 42 в гиперболической и комплексной геометрии" Недавно я разобрал будоражащий факт, откуда число 42 берётся…
видео вот https://www.youtube.com/watch?v=ZZYoCN_xzUg

и комментарий: в самом конце доклада Наташа повторила свой вопрос, для каких g оценка 42(2g-2) является точной. назовём их хорошими. я попробовал порассуждать и привёл два аргумента, оба из которых по-видимому неверные.

во-первых, g=2 вроде бы плохое — не существует метрики на поверхности рода 2, имеющей 84 изометрии. такая поверхность действительно разветвлённо накрывала бы сферу с коническими особенностями индексов 2, 3 и 7, но поиск такого накрытия — проблема Гурвица (а именно — представить перестановку циклового типа <2,2,...,2> на 84 элементах в виде произведения перестановки типа <3,...,3> и перестановки типа <7,...,7>), её люди решать в общем случае не умеют.

с другой стороны, есть пример для g=3, когда изометрий 168, см [Farb, Margalit. A primer on mapping class groups, самый конец §7.3]. пока я не понимаю как он устроен, круто если кто-то умеет в такие вещи и может прийти и объяснить.

а во-вторых, если поверхность S накрывает n-листно поверхность S', то не всякий гомеоморфизм S' может подниматься до гомеоморфизма S. даже если это накрытие Галуа (нормальное), образ π₁(S) же не обязательно сохраняется при гомеоморфизме S'. то есть у S по идее может быть не в n раз больше изометрий.

причём (детективная история!) Фарб-Маргалит тоже говорят, что поверхности, для которых оценка 42(2g-2) точна, можно размножать нормальными накрытиями. а этот аргумент неверен — сразу же после этого они приводят ссылку, что хороших g примерно столько же, сколько точных кубов [Michael Larsen. How often is 84(g−1) achieved?], довольно свежую, хотя я сам пока не понимаю что там написано тоже, здорово если кто-нибудь сможет разобрать и пересказать как они это делают.

вообще пишут, уже лет шестьдесят известно, что и плохих g, и хороших g бесконечно много. а конкретный результат звучит так: сумма Σ 1/g^s по всем хорошим g конечна, если s>1/3, а при s≤1/3 ряд расходится. в частности, последовательность хороших g не может содержать бесконечных арифметических прогрессий, поэтому-то размножать хорошие поверхности накрытиями не получится.

вот так, прикиньте! математика



group-telegram.com/kruzhochek179/569
Create:
Last Update:

видео вот https://www.youtube.com/watch?v=ZZYoCN_xzUg

и комментарий: в самом конце доклада Наташа повторила свой вопрос, для каких g оценка 42(2g-2) является точной. назовём их хорошими. я попробовал порассуждать и привёл два аргумента, оба из которых по-видимому неверные.

во-первых, g=2 вроде бы плохое — не существует метрики на поверхности рода 2, имеющей 84 изометрии. такая поверхность действительно разветвлённо накрывала бы сферу с коническими особенностями индексов 2, 3 и 7, но поиск такого накрытия — проблема Гурвица (а именно — представить перестановку циклового типа <2,2,...,2> на 84 элементах в виде произведения перестановки типа <3,...,3> и перестановки типа <7,...,7>), её люди решать в общем случае не умеют.

с другой стороны, есть пример для g=3, когда изометрий 168, см [Farb, Margalit. A primer on mapping class groups, самый конец §7.3]. пока я не понимаю как он устроен, круто если кто-то умеет в такие вещи и может прийти и объяснить.

а во-вторых, если поверхность S накрывает n-листно поверхность S', то не всякий гомеоморфизм S' может подниматься до гомеоморфизма S. даже если это накрытие Галуа (нормальное), образ π₁(S) же не обязательно сохраняется при гомеоморфизме S'. то есть у S по идее может быть не в n раз больше изометрий.

причём (детективная история!) Фарб-Маргалит тоже говорят, что поверхности, для которых оценка 42(2g-2) точна, можно размножать нормальными накрытиями. а этот аргумент неверен — сразу же после этого они приводят ссылку, что хороших g примерно столько же, сколько точных кубов [Michael Larsen. How often is 84(g−1) achieved?], довольно свежую, хотя я сам пока не понимаю что там написано тоже, здорово если кто-нибудь сможет разобрать и пересказать как они это делают.

вообще пишут, уже лет шестьдесят известно, что и плохих g, и хороших g бесконечно много. а конкретный результат звучит так: сумма Σ 1/g^s по всем хорошим g конечна, если s>1/3, а при s≤1/3 ряд расходится. в частности, последовательность хороших g не может содержать бесконечных арифметических прогрессий, поэтому-то размножать хорошие поверхности накрытиями не получится.

вот так, прикиньте! математика

BY кружочек




Share with your friend now:
group-telegram.com/kruzhochek179/569

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

WhatsApp, a rival messaging platform, introduced some measures to counter disinformation when Covid-19 was first sweeping the world. Stocks dropped on Friday afternoon, as gains made earlier in the day on hopes for diplomatic progress between Russia and Ukraine turned to losses. Technology stocks were hit particularly hard by higher bond yields. In this regard, Sebi collaborated with the Telecom Regulatory Authority of India (TRAI) to reduce the vulnerability of the securities market to manipulation through misuse of mass communication medium like bulk SMS. The gold standard of encryption, known as end-to-end encryption, where only the sender and person who receives the message are able to see it, is available on Telegram only when the Secret Chat function is enabled. Voice and video calls are also completely encrypted. Now safely in France with his spouse and three of his children, Kliuchnikov scrolls through Telegram to learn about the devastation happening in his home country.
from ms


Telegram кружочек
FROM American