Telegram Group & Telegram Channel
Несуществующие функторы

Несколько месяцев назад написал Эммануэль Фарджун (который еще нильпотентные пространства придумал). Говорит, что уверен, что не бывает никаких функторов из категории всех групп в категорию конечных групп, кроме постоянных. Но как доказать не знает. А доказать хочется, потому что его интересуют подобные вопросы для его любимых бесконечность категорий. Я скинул этот вопрос про категорию групп в чатик друзей, и Толик в тот же день доказал, красавчик вообще.

Эммануэль впечатлился, но сказал, что надо бы обобщить тогда уж. Нужно доказать, что не бывает непостоянных функторов из в каком-то смысле "больших" категорий во в каком-то смысле "маленькие" категории. Я помедитировал на доказательство Толика, десять раз его переделал, и доказал такую общую теорему.

Теорема. Пусть к — какой-то кардинал, C и D — категории, в которых определены произведения мощности к, и F — функтор из C в D. Предположим, что категория C сильно связна (то есть все её хом-множества не пусты), и что мощности хом-множеств между образами функтора F ограничены кардиналом к
|D(Fc,Fc')| ≤ к.
Тогда F постоянный функтор.

По технике — это детский сад, элементарная теория категорий, но Фарджун был доволен.

Из этой теоремы много забавных частных случаев следует. Например, из категории счётных групп нет непостоянных функторов в категорию конечно порожденных групп. Хотя чисто интуитивно довольно близкие категории. Или, например, если есть два кардинала к и л таких, что к ≥ 2^л, то нет непостоянных функторов из категории непустых множеств мощности ≤к в категорию непустых множеств мощности ≤л. Можно ещё много частных случаев напридумывать.

Мы ещё много чего понаписали, ещё другое направление там развили (изучали каких подфункторов в тождественном функторе на категории групп не бывает), скинули это дело в архив, но мы там ошибочку допустили. Мы сказали, что нет непостоянных функторов из категории всех множеств в категорию конечных множеств. Вот тут то нас и подловили. Понаписали на почту какие-то люди, что оказывается есть функтор такой. Что можно пустое множество в пустое послать, а все остальные множества в одноэлементное. И правда, я там опростоволосился с тем, что подумал, что категория множеств сильно связная, а оказалось, что хом из непустого множества в пустое множество пуст. Ну мы подправили. Нужно было категорию множеств либо на категорию непустых множеств заменить, либо на категорию множеств с отмеченной точкой. Эммануэль там еще какие-то свои гипотезы про бесконечность категории понаписал, как обычно. Выложили новую версию:

https://arxiv.org/abs/2306.04432



group-telegram.com/math_dump_of_sepa/177
Create:
Last Update:

Несуществующие функторы

Несколько месяцев назад написал Эммануэль Фарджун (который еще нильпотентные пространства придумал). Говорит, что уверен, что не бывает никаких функторов из категории всех групп в категорию конечных групп, кроме постоянных. Но как доказать не знает. А доказать хочется, потому что его интересуют подобные вопросы для его любимых бесконечность категорий. Я скинул этот вопрос про категорию групп в чатик друзей, и Толик в тот же день доказал, красавчик вообще.

Эммануэль впечатлился, но сказал, что надо бы обобщить тогда уж. Нужно доказать, что не бывает непостоянных функторов из в каком-то смысле "больших" категорий во в каком-то смысле "маленькие" категории. Я помедитировал на доказательство Толика, десять раз его переделал, и доказал такую общую теорему.

Теорема. Пусть к — какой-то кардинал, C и D — категории, в которых определены произведения мощности к, и F — функтор из C в D. Предположим, что категория C сильно связна (то есть все её хом-множества не пусты), и что мощности хом-множеств между образами функтора F ограничены кардиналом к
|D(Fc,Fc')| ≤ к.
Тогда F постоянный функтор.

По технике — это детский сад, элементарная теория категорий, но Фарджун был доволен.

Из этой теоремы много забавных частных случаев следует. Например, из категории счётных групп нет непостоянных функторов в категорию конечно порожденных групп. Хотя чисто интуитивно довольно близкие категории. Или, например, если есть два кардинала к и л таких, что к ≥ 2^л, то нет непостоянных функторов из категории непустых множеств мощности ≤к в категорию непустых множеств мощности ≤л. Можно ещё много частных случаев напридумывать.

Мы ещё много чего понаписали, ещё другое направление там развили (изучали каких подфункторов в тождественном функторе на категории групп не бывает), скинули это дело в архив, но мы там ошибочку допустили. Мы сказали, что нет непостоянных функторов из категории всех множеств в категорию конечных множеств. Вот тут то нас и подловили. Понаписали на почту какие-то люди, что оказывается есть функтор такой. Что можно пустое множество в пустое послать, а все остальные множества в одноэлементное. И правда, я там опростоволосился с тем, что подумал, что категория множеств сильно связная, а оказалось, что хом из непустого множества в пустое множество пуст. Ну мы подправили. Нужно было категорию множеств либо на категорию непустых множеств заменить, либо на категорию множеств с отмеченной точкой. Эммануэль там еще какие-то свои гипотезы про бесконечность категории понаписал, как обычно. Выложили новую версию:

https://arxiv.org/abs/2306.04432

BY Математическая свалка Сепы


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/math_dump_of_sepa/177

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The original Telegram channel has expanded into a web of accounts for different locations, including specific pages made for individual Russian cities. There's also an English-language website, which states it is owned by the people who run the Telegram channels. Continuing its crackdown against entities allegedly involved in a front-running scam using messaging app Telegram, Sebi on Thursday carried out search and seizure operations at the premises of eight entities in multiple locations across the country. But Kliuchnikov, the Ukranian now in France, said he will use Signal or WhatsApp for sensitive conversations, but questions around privacy on Telegram do not give him pause when it comes to sharing information about the war. Given the pro-privacy stance of the platform, it’s taken as a given that it’ll be used for a number of reasons, not all of them good. And Telegram has been attached to a fair few scandals related to terrorism, sexual exploitation and crime. Back in 2015, Vox described Telegram as “ISIS’ app of choice,” saying that the platform’s real use is the ability to use channels to distribute material to large groups at once. Telegram has acted to remove public channels affiliated with terrorism, but Pavel Durov reiterated that he had no business snooping on private conversations. Soloviev also promoted the channel in a post he shared on his own Telegram, which has 580,000 followers. The post recommended his viewers subscribe to "War on Fakes" in a time of fake news.
from ms


Telegram Математическая свалка Сепы
FROM American