Telegram Group & Telegram Channel
Forwarded from Душный NLP
Технический отчёт Qwen2.5

Создатели линейки языковых моделей Qwen2.5 представили технический отчёт. Вот что мы из него узнали.

Претрейн

На претрейне использовали датасет объёмом 18 триллионов токенов против 7 триллионов у Qwen 2. В частности, были данные, применявшиеся для обучения Qwen2.5-Math и Qwen2.5-Coder, что позволило улучшить результаты модели в вопросах, связанных с математикой и программированием. Также применяли синтетические данные, сгенерированные Qwen2. Scaling laws использовали для предсказания оптимальных гиперпараметров — например, для learning rate или вычисления размера батча.

Во время первой фазы претрейна длина контекста составляла 4096 токенов, а на второй и финальной — 32 768 токенов для всех моделей семейства, кроме Qwen2.5-Turbo. В её случае претрейн проходил в четыре этапа, начинаясь с 32 768 токенов и заканчивая 262 144 токенами. В каждой фазе претрейна Qwen2.5-Turbo максимального значения достигали только 40% данных, а остальные были короче. По словам авторов, это позволило модели плавно адаптироваться к новой длине контекста.

Благодаря стратегиям YaRN и Dual Chunk Attention удалось увеличить максимальную длину обрабатываемой на инференсе последовательности в четыре раза: до миллиона токенов у Qwen2.5-Turbo и до 131 072 токенов у других версий.

Алаймент

SFT-датасет состоял из более чем миллиона примеров. Длина выхода Qwen2.5 — 8192 токена, в то время как обычно она составляет менее 2000. Улучшения удалось добиться благодаря наборам данных для длинных ответов. Разработчики использовали back-translation, чтобы генерировать запросы на основе данных для предварительного обучения, ограничивали длину выхода и отфильтровывали низкокачественные пары с помощью Qwen2.

Для задач, связанных с математикой, использовали CoT-данные из Qwen2.5-Math. Кроме того, применяли rejection sampling вместе с размеченными данными и моделью награды для пошагового рассуждения. Что касается генерации кода, то здесь было несколько агентов и пары инструкций на примерно 40 языках программирования.

В части instruction following модели генерировали инструкции, проверочные коды и юнит-тесты для перекрёстной проверки. Это позволило LLM лучше следовать промптам. А благодаря внедрению цепочек рассуждений в ответы, Qwen2.5 стала лучше извлекать информацию из структурированных данных — например, таблиц.

Использовали также модель перевода инструкций с высокоресурсных на низкоресурсные языки. Каждый полученный ответ проходил оценку на семантическое соответствие оригиналу, что позволило сохранить логическую структуру и стилистику текста.

Разработчики создали сотни системных промптов, чтобы обеспечить согласованность между ними и диалогами. Для оценки качества ответов применяли несколько методов автоматической аннотации, включая специализированную модель-критика и систему коллективной оценки с участием нескольких агентов. Сохраняли только те ответы, которые все системы оценки посчитали безупречными.

На этапе DPO в качестве позитивных примеров использовали хорошие ответы с SFT. Те же, которые не прошли проверку на SFT, стали негативными примерами.

Для создания датасета задействовали как автоматические, так и ручные методы оценки. В итоге получился набор данных из 150 тысяч пар. Qwen2.5 обучалась на нём в течение одной эпохи с применением Online Merging Optimizer c learning rate 7 × 10⁻⁷.

Reward-модель тренировали на двух наборах данных: общедоступном и проприетарном, содержащем запросы со сложной структурой. Ответы генерировались с чекпоинтов Qwen-моделей, прошедших файнтюнинг разными методами (SFT, DPO, RL), и при разных температурах. Для онлайн-обучения с подкреплением применяли Group Relative Policy Optimization (GRPO) с набором, аналогичным тому, что был на этапе RL. Для каждого запроса отбирали по 8 ответов.

Душный NLP



group-telegram.com/nlpwanderer/77
Create:
Last Update:

Технический отчёт Qwen2.5

Создатели линейки языковых моделей Qwen2.5 представили технический отчёт. Вот что мы из него узнали.

Претрейн

На претрейне использовали датасет объёмом 18 триллионов токенов против 7 триллионов у Qwen 2. В частности, были данные, применявшиеся для обучения Qwen2.5-Math и Qwen2.5-Coder, что позволило улучшить результаты модели в вопросах, связанных с математикой и программированием. Также применяли синтетические данные, сгенерированные Qwen2. Scaling laws использовали для предсказания оптимальных гиперпараметров — например, для learning rate или вычисления размера батча.

Во время первой фазы претрейна длина контекста составляла 4096 токенов, а на второй и финальной — 32 768 токенов для всех моделей семейства, кроме Qwen2.5-Turbo. В её случае претрейн проходил в четыре этапа, начинаясь с 32 768 токенов и заканчивая 262 144 токенами. В каждой фазе претрейна Qwen2.5-Turbo максимального значения достигали только 40% данных, а остальные были короче. По словам авторов, это позволило модели плавно адаптироваться к новой длине контекста.

Благодаря стратегиям YaRN и Dual Chunk Attention удалось увеличить максимальную длину обрабатываемой на инференсе последовательности в четыре раза: до миллиона токенов у Qwen2.5-Turbo и до 131 072 токенов у других версий.

Алаймент

SFT-датасет состоял из более чем миллиона примеров. Длина выхода Qwen2.5 — 8192 токена, в то время как обычно она составляет менее 2000. Улучшения удалось добиться благодаря наборам данных для длинных ответов. Разработчики использовали back-translation, чтобы генерировать запросы на основе данных для предварительного обучения, ограничивали длину выхода и отфильтровывали низкокачественные пары с помощью Qwen2.

Для задач, связанных с математикой, использовали CoT-данные из Qwen2.5-Math. Кроме того, применяли rejection sampling вместе с размеченными данными и моделью награды для пошагового рассуждения. Что касается генерации кода, то здесь было несколько агентов и пары инструкций на примерно 40 языках программирования.

В части instruction following модели генерировали инструкции, проверочные коды и юнит-тесты для перекрёстной проверки. Это позволило LLM лучше следовать промптам. А благодаря внедрению цепочек рассуждений в ответы, Qwen2.5 стала лучше извлекать информацию из структурированных данных — например, таблиц.

Использовали также модель перевода инструкций с высокоресурсных на низкоресурсные языки. Каждый полученный ответ проходил оценку на семантическое соответствие оригиналу, что позволило сохранить логическую структуру и стилистику текста.

Разработчики создали сотни системных промптов, чтобы обеспечить согласованность между ними и диалогами. Для оценки качества ответов применяли несколько методов автоматической аннотации, включая специализированную модель-критика и систему коллективной оценки с участием нескольких агентов. Сохраняли только те ответы, которые все системы оценки посчитали безупречными.

На этапе DPO в качестве позитивных примеров использовали хорошие ответы с SFT. Те же, которые не прошли проверку на SFT, стали негативными примерами.

Для создания датасета задействовали как автоматические, так и ручные методы оценки. В итоге получился набор данных из 150 тысяч пар. Qwen2.5 обучалась на нём в течение одной эпохи с применением Online Merging Optimizer c learning rate 7 × 10⁻⁷.

Reward-модель тренировали на двух наборах данных: общедоступном и проприетарном, содержащем запросы со сложной структурой. Ответы генерировались с чекпоинтов Qwen-моделей, прошедших файнтюнинг разными методами (SFT, DPO, RL), и при разных температурах. Для онлайн-обучения с подкреплением применяли Group Relative Policy Optimization (GRPO) с набором, аналогичным тому, что был на этапе RL. Для каждого запроса отбирали по 8 ответов.

Душный NLP

BY NLP Wanderer




Share with your friend now:
group-telegram.com/nlpwanderer/77

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

In December 2021, Sebi officials had conducted a search and seizure operation at the premises of certain persons carrying out similar manipulative activities through Telegram channels. "There are several million Russians who can lift their head up from propaganda and try to look for other sources, and I'd say that most look for it on Telegram," he said. Founder Pavel Durov says tech is meant to set you free In a message on his Telegram channel recently recounting the episode, Durov wrote: "I lost my company and my home, but would do it again – without hesitation." The channel appears to be part of the broader information war that has developed following Russia's invasion of Ukraine. The Kremlin has paid Russian TikTok influencers to push propaganda, according to a Vice News investigation, while ProPublica found that fake Russian fact check videos had been viewed over a million times on Telegram.
from ms


Telegram NLP Wanderer
FROM American