Warning: file_put_contents(aCache/aDaily/post/rizzearch/-349-350-351-352-353-): Failed to open stream: No space left on device in /var/www/group-telegram/post.php on line 50
rizzearch | Telegram Webview: rizzearch/349 -
Telegram Group & Telegram Channel
TransformerFAM: Feedback attention is working memory

еще одна попытка заново изобрести рнн в контексте трансформера

как сейчас принято обрабатывать длинные последовательности - через скользящее окно и по блокам (хардвейрный аспект), информация передается по предыдущим токенам для каузального аттна и по предыдущим слоям. однако авторы немножечко знают за нейробиологию, где есть концепция рабочей памяти (working memory)

на уровне биологического нейрона она описывается как что-то вроде импульса, который периодически возвращается к этому самому нейрону, отчего появляется связь, которая постоянно фигурирует в нашей голове по необходимости. как только необходимость уходит, этот сигнал тоже пропадает

авторы почерпнули эту идею и решили воспроизвести это через связь токенов на том же уровне глубины в сетке. сделали это через обучаемые токены, которые вбирают в себя поблочно информацию о предыдущих токенах ⇒ блок компрессится в токены и таким образом контекст предыдущих блоков подается в трансформер в счет нескольких токенов

однако, псевдокод как будто немного противоречит основной концепции воркинг мемори. эти самые токены представляют из себя память с предыдущих блоков, при том последующие воркинг мемори токены могут обращаться к таким же токенам с предыдущих блоков (напоминает рнн с хидден стейтами, не так ли? прям то же самое). отсюда возникает интуиция, что на вход операции внимания мы можем подавать эти мемори токены и токены с данного блока, но в алгоритме к этому добавляются обычные инпут токены с предыдущих блоков. то есть 2х истории подается аттеншну - появляется послевкусие костыльности, but if it works let it work

так же на ощущение костыльности намекает тот факт, что если увеличивать количество мемори токенов (64 → 256), то перформанс ухудшается. связывают с нейробиологией, но это забавно. неужели в 64 токенах может скрываться вся необходимая воркинг мемори, почему не 52, или скорее перформанс ухудшился из-за жесткой нестабильности?

и есть кстати подозрения, что воркинг мемори работает из-за обильного количества резидуал коннекшнов + так же авторы пишут, что не нужны дополнительные веса (кроме как новых обучаемых токенов) для операции аттеншна, что странно, тк по сути эти самые токены проходят дважды через один и тот же слой (хотя тут я могу ошибаться но судя по операциям так оно и есть) ⇒ при бекворде проекция из одного пространства в другое или вотевер ослабевает (что бы это ни значило)

имхо идея вряд ли в долгосрок работает. она лучше block-wise sliding window attention (и в принципе с ним авторы и сравниваются), но есть много других вопросов

кстати есть очень классные пункты в аппендиксе о том, что они пробовали и не сработало + вывод они начали с описания фильма Нолана Мементо. за это прям респект

👀LINK



group-telegram.com/rizzearch/349
Create:
Last Update:

TransformerFAM: Feedback attention is working memory

еще одна попытка заново изобрести рнн в контексте трансформера

как сейчас принято обрабатывать длинные последовательности - через скользящее окно и по блокам (хардвейрный аспект), информация передается по предыдущим токенам для каузального аттна и по предыдущим слоям. однако авторы немножечко знают за нейробиологию, где есть концепция рабочей памяти (working memory)

на уровне биологического нейрона она описывается как что-то вроде импульса, который периодически возвращается к этому самому нейрону, отчего появляется связь, которая постоянно фигурирует в нашей голове по необходимости. как только необходимость уходит, этот сигнал тоже пропадает

авторы почерпнули эту идею и решили воспроизвести это через связь токенов на том же уровне глубины в сетке. сделали это через обучаемые токены, которые вбирают в себя поблочно информацию о предыдущих токенах ⇒ блок компрессится в токены и таким образом контекст предыдущих блоков подается в трансформер в счет нескольких токенов

однако, псевдокод как будто немного противоречит основной концепции воркинг мемори. эти самые токены представляют из себя память с предыдущих блоков, при том последующие воркинг мемори токены могут обращаться к таким же токенам с предыдущих блоков (напоминает рнн с хидден стейтами, не так ли? прям то же самое). отсюда возникает интуиция, что на вход операции внимания мы можем подавать эти мемори токены и токены с данного блока, но в алгоритме к этому добавляются обычные инпут токены с предыдущих блоков. то есть 2х истории подается аттеншну - появляется послевкусие костыльности, but if it works let it work

так же на ощущение костыльности намекает тот факт, что если увеличивать количество мемори токенов (64 → 256), то перформанс ухудшается. связывают с нейробиологией, но это забавно. неужели в 64 токенах может скрываться вся необходимая воркинг мемори, почему не 52, или скорее перформанс ухудшился из-за жесткой нестабильности?

и есть кстати подозрения, что воркинг мемори работает из-за обильного количества резидуал коннекшнов + так же авторы пишут, что не нужны дополнительные веса (кроме как новых обучаемых токенов) для операции аттеншна, что странно, тк по сути эти самые токены проходят дважды через один и тот же слой (хотя тут я могу ошибаться но судя по операциям так оно и есть) ⇒ при бекворде проекция из одного пространства в другое или вотевер ослабевает (что бы это ни значило)

имхо идея вряд ли в долгосрок работает. она лучше block-wise sliding window attention (и в принципе с ним авторы и сравниваются), но есть много других вопросов

кстати есть очень классные пункты в аппендиксе о том, что они пробовали и не сработало + вывод они начали с описания фильма Нолана Мементо. за это прям респект

👀LINK

BY rizzearch








Share with your friend now:
group-telegram.com/rizzearch/349

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

In view of this, the regulator has cautioned investors not to rely on such investment tips / advice received through social media platforms. It has also said investors should exercise utmost caution while taking investment decisions while dealing in the securities market. Oh no. There’s a certain degree of myth-making around what exactly went on, so take everything that follows lightly. Telegram was originally launched as a side project by the Durov brothers, with Nikolai handling the coding and Pavel as CEO, while both were at VK. The next bit isn’t clear, but Durov reportedly claimed that his resignation, dated March 21st, was an April Fools’ prank. TechCrunch implies that it was a matter of principle, but it’s hard to be clear on the wheres, whos and whys. Similarly, on April 17th, the Moscow Times quoted Durov as saying that he quit the company after being pressured to reveal account details about Ukrainians protesting the then-president Viktor Yanukovych. Pavel Durov, Telegram's CEO, is known as "the Russian Mark Zuckerberg," for co-founding VKontakte, which is Russian for "in touch," a Facebook imitator that became the country's most popular social networking site. Sebi said data, emails and other documents are being retrieved from the seized devices and detailed investigation is in progress.
from ms


Telegram rizzearch
FROM American