Telegram Group & Telegram Channel
Проснулись-улыбнулись после праздников, возвращаемся к истории про плиточки и квазикристаллы. Первый пост из серии тут.

Пусть мы хотим замостить бесконечную плоскость некоторым конечным набором плиток. Замощение устроено так: плитки можно использовать сколько угодно раз, можно двигать трансляционно, но поворачивать и отражать нельзя. Самые простые примеры из набора в одну-две плитки: замощение правильными треугольниками, квадратами и шестиугольниками обсуждались в прошлый раз и объясняют возможные симметрии в кристаллах. Если посмотреть на получившееся замощение, можно заметить, что повторяя любой из его элементарных кусочков, можно воспроизвести бесконечное замощение во все стороны. Тогда говорят, что замощение периодическое. С другой стороны, если внести в замощение дефект, например, положить один (на всю бесконечную плоскость) прямоугольник набок, получится непериодическое замощение. Термин «непериодическое замощение» означает, что в отдельно взятом замощении фиксированным набором плиток нет дальнего порядка, однако (и это важно) этим же набором плиток можно произвести периодическое замощение, если выложить их иначе.

Третим типом замощения является апериодическое. Важно не путать его с непериодическим и вот в чем отличие. Пусть одним набором плиток можно замостить плоскость разными способами. Если среди этих способов есть хотя бы одно периодическое замощение (и сколько угодно непериодических), говорят, что этим набором можно замостить плоскость периодически или непериодически. Если же для данного набора плиток нет ни одного способа замостить плоскость периодически, говорят, что существует апериодическое замощение этим набором плиток.

Почему нам вообще важно отличать периодическое и апериодическое замощение? Задача апериодического замощения в середине прошлого века была ассоциирована с задачей остановки. Для данной программы и входных данных маширы Тьюринга надо понять, наступит ли окончание программы или она будет выполнять операции без остановки.

О том, какие бывают апериодические замощения и бывают ли, читайте в следующей части.



group-telegram.com/sonyascience/578
Create:
Last Update:

Проснулись-улыбнулись после праздников, возвращаемся к истории про плиточки и квазикристаллы. Первый пост из серии тут.

Пусть мы хотим замостить бесконечную плоскость некоторым конечным набором плиток. Замощение устроено так: плитки можно использовать сколько угодно раз, можно двигать трансляционно, но поворачивать и отражать нельзя. Самые простые примеры из набора в одну-две плитки: замощение правильными треугольниками, квадратами и шестиугольниками обсуждались в прошлый раз и объясняют возможные симметрии в кристаллах. Если посмотреть на получившееся замощение, можно заметить, что повторяя любой из его элементарных кусочков, можно воспроизвести бесконечное замощение во все стороны. Тогда говорят, что замощение периодическое. С другой стороны, если внести в замощение дефект, например, положить один (на всю бесконечную плоскость) прямоугольник набок, получится непериодическое замощение. Термин «непериодическое замощение» означает, что в отдельно взятом замощении фиксированным набором плиток нет дальнего порядка, однако (и это важно) этим же набором плиток можно произвести периодическое замощение, если выложить их иначе.

Третим типом замощения является апериодическое. Важно не путать его с непериодическим и вот в чем отличие. Пусть одним набором плиток можно замостить плоскость разными способами. Если среди этих способов есть хотя бы одно периодическое замощение (и сколько угодно непериодических), говорят, что этим набором можно замостить плоскость периодически или непериодически. Если же для данного набора плиток нет ни одного способа замостить плоскость периодически, говорят, что существует апериодическое замощение этим набором плиток.

Почему нам вообще важно отличать периодическое и апериодическое замощение? Задача апериодического замощения в середине прошлого века была ассоциирована с задачей остановки. Для данной программы и входных данных маширы Тьюринга надо понять, наступит ли окончание программы или она будет выполнять операции без остановки.

О том, какие бывают апериодические замощения и бывают ли, читайте в следующей части.

BY Соня и наука




Share with your friend now:
group-telegram.com/sonyascience/578

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

I want a secure messaging app, should I use Telegram? Following this, Sebi, in an order passed in January 2022, established that the administrators of a Telegram channel having a large subscriber base enticed the subscribers to act upon recommendations that were circulated by those administrators on the channel, leading to significant price and volume impact in various scrips. Channels are not fully encrypted, end-to-end. All communications on a Telegram channel can be seen by anyone on the channel and are also visible to Telegram. Telegram may be asked by a government to hand over the communications from a channel. Telegram has a history of standing up to Russian government requests for data, but how comfortable you are relying on that history to predict future behavior is up to you. Because Telegram has this data, it may also be stolen by hackers or leaked by an internal employee. Groups are also not fully encrypted, end-to-end. This includes private groups. Private groups cannot be seen by other Telegram users, but Telegram itself can see the groups and all of the communications that you have in them. All of the same risks and warnings about channels can be applied to groups. The perpetrators use various names to carry out the investment scams. They may also impersonate or clone licensed capital market intermediaries by using the names, logos, credentials, websites and other details of the legitimate entities to promote the illegal schemes.
from ms


Telegram Соня и наука
FROM American