This media is not supported in your browser
VIEW IN TELEGRAM
Запущен "Кондор-ФКА" № 2
29 ноября 2024 года в 21:50:25 всемирного времени (30 ноября в 00:50:25 московского времени) с площадки № 1С космодрома Восточный осуществлён пуск ракеты-носителя "Союз-2.1а" с разгонным блоком “Фрегат” и спутником дистанционного зондирования Земли "Кондор-ФКА" № 2. Космический аппарат с разгонным блоком были успешно выведены на околоземную орбиту, после чего разгонный блок вывел аппарат на целевую орбиту.
📖 Пресс-кит Роскосмоса: «Запуск радиолокационного спутника “Кондор-ФКА” № 2»
Спутник “Кондор-ФКА” № 2 будет вести круглосуточное всепогодное радиолокационное (радарное) наблюдение Земли, получая данные высокого и среднего пространственного разрешения.
В настоящее время на орбите работает 🛰 “Кондор-ФКА” № 1, запущенный 27 мая 2023 года.
• Описание спутников “Кондор-ФКА”
• Характеристики режимов съёмки
📹 Запуск “Кондор-ФКА” № 2
#россия #SAR
29 ноября 2024 года в 21:50:25 всемирного времени (30 ноября в 00:50:25 московского времени) с площадки № 1С космодрома Восточный осуществлён пуск ракеты-носителя "Союз-2.1а" с разгонным блоком “Фрегат” и спутником дистанционного зондирования Земли "Кондор-ФКА" № 2. Космический аппарат с разгонным блоком были успешно выведены на околоземную орбиту, после чего разгонный блок вывел аппарат на целевую орбиту.
📖 Пресс-кит Роскосмоса: «Запуск радиолокационного спутника “Кондор-ФКА” № 2»
Спутник “Кондор-ФКА” № 2 будет вести круглосуточное всепогодное радиолокационное (радарное) наблюдение Земли, получая данные высокого и среднего пространственного разрешения.
В настоящее время на орбите работает 🛰 “Кондор-ФКА” № 1, запущенный 27 мая 2023 года.
• Описание спутников “Кондор-ФКА”
• Характеристики режимов съёмки
📹 Запуск “Кондор-ФКА” № 2
#россия #SAR
Группировка спутников “Кондор-ФКА” № 1 и № 2
Орбитальная группировка из двух спутников “Кондор-ФКА” обеспечивает проведение радарной съёмки земной поверхности в полосе широт от 85° с.ш. до 85° ю.ш. в детальном прожекторном (ДПР), детальном непрерывном (ДНР) и обзорном режимах (ОР) с возможностью реализации интерферометрической съемки в каждом из указанных режимов.
Группировка “Кондор-ФКА” обеспечивает среднюю периодичность наблюдения произвольного объекта поверхности Земли на широте 30° не более 12–14 часов с вероятностью 0,9 или не более 24–26 часов с вероятностью 0,9 при обеспечении однопроходной интерферометрической съемки объектов двумя космическими аппаратами.
Суточная производительность группировки:
• не менее 200 условных кадров 10 км x 10 км в ДПР с разрешением 1–2 м или
• не менее 200 000 кв. км в ДНР с разрешением 2–3 м или
• не менее 1 000 000 кв. км в ОР с разрешением 6–12 м.
📖 Руководство пользователя данными "Кондор-ФКА"
Источник
#россия #SAR
Орбитальная группировка из двух спутников “Кондор-ФКА” обеспечивает проведение радарной съёмки земной поверхности в полосе широт от 85° с.ш. до 85° ю.ш. в детальном прожекторном (ДПР), детальном непрерывном (ДНР) и обзорном режимах (ОР) с возможностью реализации интерферометрической съемки в каждом из указанных режимов.
Группировка “Кондор-ФКА” обеспечивает среднюю периодичность наблюдения произвольного объекта поверхности Земли на широте 30° не более 12–14 часов с вероятностью 0,9 или не более 24–26 часов с вероятностью 0,9 при обеспечении однопроходной интерферометрической съемки объектов двумя космическими аппаратами.
Суточная производительность группировки:
• не менее 200 условных кадров 10 км x 10 км в ДПР с разрешением 1–2 м или
• не менее 200 000 кв. км в ДНР с разрешением 2–3 м или
• не менее 1 000 000 кв. км в ОР с разрешением 6–12 м.
📖 Руководство пользователя данными "Кондор-ФКА"
Источник
#россия #SAR
Forwarded from Добрый Овчинников
This media is not supported in your browser
VIEW IN TELEGRAM
Очень хороший комментарий Игоря Афанасьева и Коли Вдовина в конце трансляции Роскосмоса с запуска "Кондор-ФКА"№2.
На фоне кадров полученных первым аппаратом серии Кондор-ФКА объясняют возможности/ режимы съемки (полоса захвата и разрешение ( метров на 1 пиксель) радиолокационной съемки!
Я такие кадры вижу впервые - очень здорово!
На фоне кадров полученных первым аппаратом серии Кондор-ФКА объясняют возможности/ режимы съемки (полоса захвата и разрешение ( метров на 1 пиксель) радиолокационной съемки!
Я такие кадры вижу впервые - очень здорово!
Российские ученые создали суперкомпьютерную модель деятельного слоя суши (почвы, озер и растительности), которая поможет прогнозировать влияние климатических изменений на состояние экосистем. Ожидается, что она станет частью национальной климатической модели и национальной системы климатического мониторинга и прогноза.
Вместе с учеными МГУ авторами модели, получившей название TerM (Terrestrial Model), выступили специалисты Института вычислительной математики им. Г. И. Марчука РАН. Разработка использует результаты расчетов, выполненные на суперкомпьютере "Ломоносов-2".
"Внедрение такой модели в составе национальной климатической модели позволит более реалистично моделировать климат и прогнозировать его изменения на территории России с учетом естественных и антропогенных факторов. В будущем, к примеру, можно будет оценивать влияние тех или иных решений в области регулирования выбросов на состояние климатической системы. С учетом сложности климатической системы, прогноз этой реакции возможен только с учетом локальных процессов в деятельном слое суши, которые мы моделируем", — сообщил старший научный сотрудник лаборатории суперкомпьютерного моделирования природно-климатических процессов Научно-исследовательского вычислительного центра МГУ им. М. В. Ломоносова Михаил Варенцов.
Исследователь также рассказал про другую разработку в области моделирования погоды и климата — новую ИИ-модель, которая позволяет прогнозировать эффект городского острова тепла. Остров тепла — это локальная температурная аномалия в городах, которая может усиливать тепловой стресс и создавать дополнительные риски для здоровья горожан в условиях летней жары. Для построения этой модели используется новый суперкомпьютер "МГУ-270", ориентированный на ИИ-задачи.
"Вначале мы разработали модель для центра Москвы, а потом доработали ее, и теперь наша система позволяет получить карту температурах аномалий для всей Московской агломерации. По точности прогноза она сопоставима с классическими подходами и может использоваться для анализа температурных изменений в мегаполисах".
Источник
#россия #климат
Вместе с учеными МГУ авторами модели, получившей название TerM (Terrestrial Model), выступили специалисты Института вычислительной математики им. Г. И. Марчука РАН. Разработка использует результаты расчетов, выполненные на суперкомпьютере "Ломоносов-2".
"Внедрение такой модели в составе национальной климатической модели позволит более реалистично моделировать климат и прогнозировать его изменения на территории России с учетом естественных и антропогенных факторов. В будущем, к примеру, можно будет оценивать влияние тех или иных решений в области регулирования выбросов на состояние климатической системы. С учетом сложности климатической системы, прогноз этой реакции возможен только с учетом локальных процессов в деятельном слое суши, которые мы моделируем", — сообщил старший научный сотрудник лаборатории суперкомпьютерного моделирования природно-климатических процессов Научно-исследовательского вычислительного центра МГУ им. М. В. Ломоносова Михаил Варенцов.
Исследователь также рассказал про другую разработку в области моделирования погоды и климата — новую ИИ-модель, которая позволяет прогнозировать эффект городского острова тепла. Остров тепла — это локальная температурная аномалия в городах, которая может усиливать тепловой стресс и создавать дополнительные риски для здоровья горожан в условиях летней жары. Для построения этой модели используется новый суперкомпьютер "МГУ-270", ориентированный на ИИ-задачи.
"Вначале мы разработали модель для центра Москвы, а потом доработали ее, и теперь наша система позволяет получить карту температурах аномалий для всей Московской агломерации. По точности прогноза она сопоставима с классическими подходами и может использоваться для анализа температурных изменений в мегаполисах".
Источник
#россия #климат
🙏Благодарим, расположив в календарном порядке, телеграм-каналы, делавшие репосты и цитировавшие наши публикации в ноябре 2024 года:
* @gis_proxima
* @agrodt
* @solar_lunar
* @naukaidannye
* @rscc_rscc
* @sabakac
* @grishkafilippov
* @ykuthydromet
* @twrussia
* @UzbekistanTtransparentWorld
* @SCANEX_news
* @wind_vostok
* @IngeniumNotes
* @dobriy_ovchinnikov
* @militaryrussiaru
* @igce01
* @pozivnoy_kazman
Спасибо, коллеги!
* @gis_proxima
* @agrodt
* @solar_lunar
* @naukaidannye
* @rscc_rscc
* @sabakac
* @grishkafilippov
* @ykuthydromet
* @twrussia
* @UzbekistanTtransparentWorld
* @SCANEX_news
* @wind_vostok
* @IngeniumNotes
* @dobriy_ovchinnikov
* @militaryrussiaru
* @igce01
* @pozivnoy_kazman
Спасибо, коллеги!
Речные геокартины Дэниела Коу
Цифровые модели рельефа служат картографу и художнику Дэниелу Коу (Daniel Coe) материалом для создания захватывающих картин речных ландшафтов, таких как дельта реки Лена. Геокартина или, если угодно, визуальная интерпретация геоморфологических особенностей дельты, получена на основе цифровой модели рельефа ArcticDEM, созданной в Polar Geospatial Center Университета Миннесоты.
Работы Коу можно найти на его 🔗 сайте и, в максимальном разрешении, на flickr-аккаунте. На сайте есть не только галерея работ, но и учебные материалы по созданию геокартин.
#снимки #DEM
Цифровые модели рельефа служат картографу и художнику Дэниелу Коу (Daniel Coe) материалом для создания захватывающих картин речных ландшафтов, таких как дельта реки Лена. Геокартина или, если угодно, визуальная интерпретация геоморфологических особенностей дельты, получена на основе цифровой модели рельефа ArcticDEM, созданной в Polar Geospatial Center Университета Миннесоты.
Работы Коу можно найти на его 🔗 сайте и, в максимальном разрешении, на flickr-аккаунте. На сайте есть не только галерея работ, но и учебные материалы по созданию геокартин.
#снимки #DEM
Обнаружение погруженного в воду пластика по данным БПЛА и спутника Sentinel-2
В работе Fronkova et al. исследовались возможности дистанционного обнаружения пластика, погруженного в пресную воду. Ученые развернули пластиковый тент размером 10 × 10 м в пресноводном озере и в течение двух недель снимали его беспилотным летательным аппаратом (БПЛА) с несколькими датчиками, разным пространственным разрешением и глубиной погружения (данные съемки доступны), а также спутником Sentinel-2.
Оказалось, что при помощи беспилотника погруженный в воду пластиковый тент можно обнаружить на глубине ~0,5 м в ближнем инфракрасном диапазоне (~810 нм) и в одном из каналов “красного края” (~730 нм). Но лучшие результаты показал красный канал (~669 нм) — 84% истинных положительных результатов при глубине погружения пластика ~1 м. Указанные спектральные каналы превзошли по точности обнаружения специальный индекс пластика (Plastic Index, PI).
В целом, отражательная способность пластикового тента в диапазоне 400–1000 нм ослабевала от ~0,2, при погружении на несколько сантиметров, до ~0,05 при погружении на глубину ~0,5 м.
Ни в отдельных каналах Sentinel-2, ни в спектральных индексах (PI или Floating Debris Index (FDI)) не удалось определить, находится ли пластиковый тент размером 10 × 10 м под поверхностью воды. В целом, работа показала, что для обнаружения притопленного пластика пространственное разрешение гораздо важнее, чем спектральное.
#пластик
В работе Fronkova et al. исследовались возможности дистанционного обнаружения пластика, погруженного в пресную воду. Ученые развернули пластиковый тент размером 10 × 10 м в пресноводном озере и в течение двух недель снимали его беспилотным летательным аппаратом (БПЛА) с несколькими датчиками, разным пространственным разрешением и глубиной погружения (данные съемки доступны), а также спутником Sentinel-2.
Оказалось, что при помощи беспилотника погруженный в воду пластиковый тент можно обнаружить на глубине ~0,5 м в ближнем инфракрасном диапазоне (~810 нм) и в одном из каналов “красного края” (~730 нм). Но лучшие результаты показал красный канал (~669 нм) — 84% истинных положительных результатов при глубине погружения пластика ~1 м. Указанные спектральные каналы превзошли по точности обнаружения специальный индекс пластика (Plastic Index, PI).
В целом, отражательная способность пластикового тента в диапазоне 400–1000 нм ослабевала от ~0,2, при погружении на несколько сантиметров, до ~0,05 при погружении на глубину ~0,5 м.
Ни в отдельных каналах Sentinel-2, ни в спектральных индексах (PI или Floating Debris Index (FDI)) не удалось определить, находится ли пластиковый тент размером 10 × 10 м под поверхностью воды. В целом, работа показала, что для обнаружения притопленного пластика пространственное разрешение гораздо важнее, чем спектральное.
#пластик
MDPI
Assessing the Effect of Water on Submerged and Floating Plastic Detection Using Remote Sensing and K-Means Clustering
Marine and freshwater plastic pollution is a worldwide problem affecting ecosystems and human health. Although remote sensing has been used to map large floating plastic rafts, there are research gaps in detecting submerged plastic due to the limited amount…
Sidus Space подготовила LizzieSat-2 к запуску в декабре
Американская компания Sidus Space завершила подготовку к запуску своего спутника LizzieSat-2. Предполагается, что он будет выведен на орбиту в составе миссии SpaceX Bandwagon-2, запланированной на декабрь нынешнего года.
LizzieSat-2, созданный на заводе Sidus Space в штате Флорида, содержит несколько полезных нагрузок: AIS для отслеживания морской обстановки, мультиспектральный датчик для обнаружения метана и камеры высокого разрешения. В частности, на спутнике установлен HEO Holmes Imager от HEO (США), дочерней компании австралийской HEO. Эта камера используется в платформе HEO Inspect, предназначенной для инспекции спутников на орбите и наблюдения за космическими объектами. По договору между компаниями LizzieSat-2 будет поставлять данные для HEO.
Спутник оснащен разработанным в Sidus Space процессором FeatherEdge AI для обработки данных на орбите. Предполагается, что такая обработка будет использована в задачах осведомленность о ситуации в космосе (SSA) и мониторинга окружающей среды,
📸 Художественное изображение КА LizzieSat
Источник
#США #австралия #onboard
Американская компания Sidus Space завершила подготовку к запуску своего спутника LizzieSat-2. Предполагается, что он будет выведен на орбиту в составе миссии SpaceX Bandwagon-2, запланированной на декабрь нынешнего года.
LizzieSat-2, созданный на заводе Sidus Space в штате Флорида, содержит несколько полезных нагрузок: AIS для отслеживания морской обстановки, мультиспектральный датчик для обнаружения метана и камеры высокого разрешения. В частности, на спутнике установлен HEO Holmes Imager от HEO (США), дочерней компании австралийской HEO. Эта камера используется в платформе HEO Inspect, предназначенной для инспекции спутников на орбите и наблюдения за космическими объектами. По договору между компаниями LizzieSat-2 будет поставлять данные для HEO.
Спутник оснащен разработанным в Sidus Space процессором FeatherEdge AI для обработки данных на орбите. Предполагается, что такая обработка будет использована в задачах осведомленность о ситуации в космосе (SSA) и мониторинга окружающей среды,
📸 Художественное изображение КА LizzieSat
Источник
#США #австралия #onboard
OpenCosmos изготовит спутники для исследования магнитного поля Земли и ионосферной плазмы
Европейский производитель малых спутников Open Cosmos подписал контракт с Европейским космическим агентством (ESA) на создание трех малых спутников NanoMagSat для изучения магнитного поля и ионосферы Земли. Контракт стоимостью 36,5 млн долларов (34,6 млн евро) включает в себя разработку, запуск и ввод спутников в эксплуатацию.
В начале этого года ЕSA выбрало NanoMagSat и Tango (пару малых спутников для мониторинга парниковых газов) в качестве миссий Scout по программе Earth Explorer. Миссии Scout должны быть дешевыми (не более 35 млн евро) и быстрыми (срок от начала работ до запуска — не более трех лет).
Три спутника форм-фактора CubeSat 16U будут работать на орбитах высотой 545 км (два — с наклонением 60°, третий — на полярной орбите). Каждый спутник будет оснащен магнитометрами на штанге и зондом Ленгмюра для измерения магнитного поля Земли и ионосферной плазмы. Первый спутник будет запущен в конце 2027 года, а два других — в 2028 году.
NanoMagSat будет продолжать наблюдения, начатые миссией Swarm, в которой для изучения магнитного поля Земли используются три более крупных спутника.
Кроме Open Cosmos, в команду разработчиков входят организации из Дании, Франции, Норвегии и Испании, которые изготавливают полезную нагрузку, а также штангу и звездные датчики.
Источник
#UK #ионосфера
Европейский производитель малых спутников Open Cosmos подписал контракт с Европейским космическим агентством (ESA) на создание трех малых спутников NanoMagSat для изучения магнитного поля и ионосферы Земли. Контракт стоимостью 36,5 млн долларов (34,6 млн евро) включает в себя разработку, запуск и ввод спутников в эксплуатацию.
В начале этого года ЕSA выбрало NanoMagSat и Tango (пару малых спутников для мониторинга парниковых газов) в качестве миссий Scout по программе Earth Explorer. Миссии Scout должны быть дешевыми (не более 35 млн евро) и быстрыми (срок от начала работ до запуска — не более трех лет).
Три спутника форм-фактора CubeSat 16U будут работать на орбитах высотой 545 км (два — с наклонением 60°, третий — на полярной орбите). Каждый спутник будет оснащен магнитометрами на штанге и зондом Ленгмюра для измерения магнитного поля Земли и ионосферной плазмы. Первый спутник будет запущен в конце 2027 года, а два других — в 2028 году.
NanoMagSat будет продолжать наблюдения, начатые миссией Swarm, в которой для изучения магнитного поля Земли используются три более крупных спутника.
Кроме Open Cosmos, в команду разработчиков входят организации из Дании, Франции, Норвегии и Испании, которые изготавливают полезную нагрузку, а также штангу и звездные датчики.
Источник
#UK #ионосфера
Forwarded from Госкорпорация «Роскосмос»
Государственная комиссия приняла решение о завершении лётных испытаний и рекомендовала государственному заказчику принять космический комплекс «Метеор-3М» с космическим аппаратом «Метеор-М» № 2-4 производства Корпорации «ВНИИЭМ» в эксплуатацию.
Космический комплекс «Метеор-3М» предназначен для дистанционного зондирования Земли и атмосферы в интересах метеорологии, гидрологии, агрометеорологии, климатического мониторинга, мониторинга экологической обстановки и чрезвычайных ситуаций природного и техногенного характера.
Он также служит для научных гелиогеофизических исследований и анализа атмосферы в глобальном масштабе, используется для поддержки спасательных операций.
ℹ️ Подробнее — на сайте
Please open Telegram to view this post
VIEW IN TELEGRAM
SatVu привлекла инвестиции на сумму 20 миллионов фунтов стерлингов
Британская компания SatVu, занимающаяся тепловой инфракрасной съемкой из космоса, привлекла 20 млн фунтов стерлингов инвестиций. Это позволит ускорить разработку и запуск спутников HotSat-2 и HotSat-3, запланированный на 2025 год.
Первый спутник компании, HotSat-1, запущенный в июне 2023 года, выполнял тепловую съемку с пространственным разрешением 3,5 метра. Через полгода работы на орбите у спутника отказала камера. Тем не менее, компания признала миссию HotSat-1 успешной.
📸 Карта температуры земной поверхности, построенная по данным SatVu HotSat-1.
Источник
#LST #UK
Британская компания SatVu, занимающаяся тепловой инфракрасной съемкой из космоса, привлекла 20 млн фунтов стерлингов инвестиций. Это позволит ускорить разработку и запуск спутников HotSat-2 и HotSat-3, запланированный на 2025 год.
Первый спутник компании, HotSat-1, запущенный в июне 2023 года, выполнял тепловую съемку с пространственным разрешением 3,5 метра. Через полгода работы на орбите у спутника отказала камера. Тем не менее, компания признала миссию HotSat-1 успешной.
📸 Карта температуры земной поверхности, построенная по данным SatVu HotSat-1.
Источник
#LST #UK
Open Earth Engine Library (OEEL) — коллекция полезных функций для Google Earth Engine (GEE).
Для использования OEEL с GEE JavaScript API достаточно импортировать ее код
а затем использовать нужные функции.
По мере роста библиотеки время загрузки также увеличивается. Чтобы решить эту проблему, разработчики предлагают версию библиотеки с быстрой загрузкой
Отметим, что эта версия не должна использоваться для отладки.
Чтобы получить информацию о функциях, добавьте в конец кода следующую строку
Вы получите список всех использованных функций и другую связанную с ними информацию.
OEEL существует в виде Python-пакета.
Установка:
Импорт:
🖥 Репозиторий кода OEEL
🖥 Код примеров
#GEE #python
Для использования OEEL с GEE JavaScript API достаточно импортировать ее код
var oeel=require('users/OEEL/lib:loadAll')
а затем использовать нужные функции.
По мере роста библиотеки время загрузки также увеличивается. Чтобы решить эту проблему, разработчики предлагают версию библиотеки с быстрой загрузкой
var oeel=require('users/OEEL/lib:loadAllSF')
Отметим, что эта версия не должна использоваться для отладки.
Чтобы получить информацию о функциях, добавьте в конец кода следующую строку
print('List of functions used',oeel.refs())
Вы получите список всех использованных функций и другую связанную с ними информацию.
OEEL существует в виде Python-пакета.
Установка:
pip install oeel
Импорт:
from oeel import oeel
🖥 Репозиторий кода OEEL
🖥 Код примеров
#GEE #python
Open Earth Engine Library (продолжение)
OEEL насчитывает десятки функций. Вот некоторые из них, относящиеся к объектам Image, ImageCollection, Feature и FeatureCollection:
🌍 Image
•
•
•
•
•
🌍 ImageCollection
•
•
•
•
•
•
🌍 Feature
•
🌍 FeatureCollection
•
#GEE #python
OEEL насчитывает десятки функций. Вот некоторые из них, относящиеся к объектам Image, ImageCollection, Feature и FeatureCollection:
🌍 Image
•
arrayDTW
— возвращает DTW (dynamic time warping) bмежду двумя изображениями, для каждого пикселя•
inverseDistanceInterpolation
— пространственная интерполяция методом IDW (inverse distance weighting)•
kriging
— пространственная интерполяция с помощью кригинга•
propertyAsBand
— создает новый слой (канал) изображения из свойств этого изображения•
semivariogram
— вычисляет семивариограмму🌍 ImageCollection
•
OtsuThreshold
— рассчитывает порог Оцу (Otsu) для коллекции•
SavatskyGolayFilter
— фильтрация снимков коллекции фильтром Савицкого-Голая (Savitsky-Golay). В названии функции содержится ошибка)•
enhancingCollection
— алгоритм, расширяющий коллекцию, добавляя к ней новую коллекцию. Каждое изображение первой коллекции сливается с изображением второй коллекции•
fromSingleImage
— загрузка изображения как коллекции•
medoid
— вычисляет медоид коллекции•
movingWindow
— фильтрация коллекции методом “скользящего окна”🌍 Feature
•
asLabel
— генерирует функцию, преобразующую Feature в аннотацию на изображении🌍 FeatureCollection
•
fromList
— преобразует List в FeatureCollection#GEE #python
Платформа CubeSatGPT для обмена информацией со спутниками
Компания Vector Space Biosciences собирается отправить на орбиту наноспутник CubeSat с тихоходками на борту. Предполагается исследовать воздействие на тихоходок микрогравитации и космической радиации.
Для получения информации о состоянии тихоходок будет использована платформа CubeSatGPT. Компания предлагает бесплатную подписку на нее для школьников и преподавателей. По словам генерального директора Vector Space Biosciences Касиана Фрэнкса (Kasian Franks), школьникиюннаты смогут “задавать вопросы CubeSat'у с тихоходками, <…> вроде «Как сегодня поживают тихоходки?» или «Опишите, насколько холодно в космосе для тихоходок», а также более сложные запросы, включающие детали измерений в условиях микрогравитации и космической радиации”. Компания предполагает использовать CubeSatGPT для запусков CubeSat с биотехнологическими, фармацевтическими, материаловедческими и другими полезными нагрузками.
#ИИ
Компания Vector Space Biosciences собирается отправить на орбиту наноспутник CubeSat с тихоходками на борту. Предполагается исследовать воздействие на тихоходок микрогравитации и космической радиации.
Для получения информации о состоянии тихоходок будет использована платформа CubeSatGPT. Компания предлагает бесплатную подписку на нее для школьников и преподавателей. По словам генерального директора Vector Space Biosciences Касиана Фрэнкса (Kasian Franks), школьники
#ИИ