Telegram Group & Telegram Channel
Делаем t-тесты или u-тесты в R сразу для многих колонок с помощью `tidyverse`-подхода

Бывают ситуации, когда измерили много количественных переменных для двух групп, например контрольной и с заболеванием, я встречала такие данные у медиков или как результаты масс-спектрометрии. Планируется сравнить все эти количественные переменные тестом Стьюдента или Манна-Уитни, но вручную прописывать 3 или больше раз t-тест кажется не очень хорошей идеей. Что можно сделать? Будем использовать следующий подход: сначала развернем таблицу в длинный формат, соберем в списки значения по каждой группе и количественной переменной, затем таблицу снова превратим в широкий формат, но уже в виде
переменная1 [список значений контрольной группы] [список значений экспериментальной группы]

И уже к этой таблице применим нужный тест один раз и получим список p-value для каждой количественной переменной! Прикрепляю пример кода, постаралась прокомментировать основные моменты, данные сгенерированы из стандартного нормального распределения с заданием seed, так что этот код должен воспроизвестись:

 r
library(dplyr)
library(tidyr)
set.seed(2)
df <- data.frame(lapply(rep(100,15), rnorm),
group = rep(c('control', 'treatment'), each = 50)) # генерируем данные
colnames(df)[1:15] <- paste0('marker', 1:15) # меняем имена колонок на более понятные
df %>%
select(where(is.numeric), group) %>% # это на случай, если в исходном датафрейме не только числовые переменные
pivot_longer(cols = -group, names_to = 'variable') %>% # преобразуем датафрейм в long-формат
group_by(group, variable) %>% # группируем по типу обработки и типу переменных
summarise(value = list(value)) %>% # собираем в списки
pivot_wider(id_cols = c(variable), names_from = group) %>% # разворачиваем обратно
group_by(variable) %>% # группируем для проведения стат теста
# запускаем тест Манна-Уитни, сохраняем u-значение и p-value
mutate(p_value = wilcox.test(unlist(control), unlist(treatment))$p.value,
u_value = wilcox.test(unlist(control), unlist(treatment))$statistic)
#> `summarise()` has grouped output by 'group'. You can override using the
#> `.groups` argument.
#> # A tibble: 15 × 5
#> # Groups: variable [15]
#> variable control treatment p_value u_value
#> <chr> <list> <list> <dbl> <dbl>
#> 1 marker1 <dbl [50]> <dbl [50]> 0.293 1403
#> 2 marker10 <dbl [50]> <dbl [50]> 0.0403 1548
#> 3 marker11 <dbl [50]> <dbl [50]> 0.269 1411
#> 4 marker12 <dbl [50]> <dbl [50]> 0.997 1249
#> 5 marker13 <dbl [50]> <dbl [50]> 0.323 1106
#> 6 marker14 <dbl [50]> <dbl [50]> 0.560 1335
#> 7 marker15 <dbl [50]> <dbl [50]> 0.667 1313
#> 8 marker2 <dbl [50]> <dbl [50]> 0.117 1478
#> 9 marker3 <dbl [50]> <dbl [50]> 0.931 1263
#> 10 marker4 <dbl [50]> <dbl [50]> 0.866 1225
#> 11 marker5 <dbl [50]> <dbl [50]> 0.791 1211
#> 12 marker6 <dbl [50]> <dbl [50]> 0.986 1247
#> 13 marker7 <dbl [50]> <dbl [50]> 0.920 1235
#> 14 marker8 <dbl [50]> <dbl [50]> 0.0169 1597
#> 15 marker9 <dbl [50]> <dbl [50]> 0.707 1195

Если понадобится сделать не тест Манна-Уитни, как в примере, а t-test, то надо просто поменять в последней команде wilcox.test() на t.test().



group-telegram.com/stats_for_science/67
Create:
Last Update:

Делаем t-тесты или u-тесты в R сразу для многих колонок с помощью `tidyverse`-подхода

Бывают ситуации, когда измерили много количественных переменных для двух групп, например контрольной и с заболеванием, я встречала такие данные у медиков или как результаты масс-спектрометрии. Планируется сравнить все эти количественные переменные тестом Стьюдента или Манна-Уитни, но вручную прописывать 3 или больше раз t-тест кажется не очень хорошей идеей. Что можно сделать? Будем использовать следующий подход: сначала развернем таблицу в длинный формат, соберем в списки значения по каждой группе и количественной переменной, затем таблицу снова превратим в широкий формат, но уже в виде
переменная1 [список значений контрольной группы] [список значений экспериментальной группы]

И уже к этой таблице применим нужный тест один раз и получим список p-value для каждой количественной переменной! Прикрепляю пример кода, постаралась прокомментировать основные моменты, данные сгенерированы из стандартного нормального распределения с заданием seed, так что этот код должен воспроизвестись:

 r
library(dplyr)
library(tidyr)
set.seed(2)
df <- data.frame(lapply(rep(100,15), rnorm),
group = rep(c('control', 'treatment'), each = 50)) # генерируем данные
colnames(df)[1:15] <- paste0('marker', 1:15) # меняем имена колонок на более понятные
df %>%
select(where(is.numeric), group) %>% # это на случай, если в исходном датафрейме не только числовые переменные
pivot_longer(cols = -group, names_to = 'variable') %>% # преобразуем датафрейм в long-формат
group_by(group, variable) %>% # группируем по типу обработки и типу переменных
summarise(value = list(value)) %>% # собираем в списки
pivot_wider(id_cols = c(variable), names_from = group) %>% # разворачиваем обратно
group_by(variable) %>% # группируем для проведения стат теста
# запускаем тест Манна-Уитни, сохраняем u-значение и p-value
mutate(p_value = wilcox.test(unlist(control), unlist(treatment))$p.value,
u_value = wilcox.test(unlist(control), unlist(treatment))$statistic)
#> `summarise()` has grouped output by 'group'. You can override using the
#> `.groups` argument.
#> # A tibble: 15 × 5
#> # Groups: variable [15]
#> variable control treatment p_value u_value
#> <chr> <list> <list> <dbl> <dbl>
#> 1 marker1 <dbl [50]> <dbl [50]> 0.293 1403
#> 2 marker10 <dbl [50]> <dbl [50]> 0.0403 1548
#> 3 marker11 <dbl [50]> <dbl [50]> 0.269 1411
#> 4 marker12 <dbl [50]> <dbl [50]> 0.997 1249
#> 5 marker13 <dbl [50]> <dbl [50]> 0.323 1106
#> 6 marker14 <dbl [50]> <dbl [50]> 0.560 1335
#> 7 marker15 <dbl [50]> <dbl [50]> 0.667 1313
#> 8 marker2 <dbl [50]> <dbl [50]> 0.117 1478
#> 9 marker3 <dbl [50]> <dbl [50]> 0.931 1263
#> 10 marker4 <dbl [50]> <dbl [50]> 0.866 1225
#> 11 marker5 <dbl [50]> <dbl [50]> 0.791 1211
#> 12 marker6 <dbl [50]> <dbl [50]> 0.986 1247
#> 13 marker7 <dbl [50]> <dbl [50]> 0.920 1235
#> 14 marker8 <dbl [50]> <dbl [50]> 0.0169 1597
#> 15 marker9 <dbl [50]> <dbl [50]> 0.707 1195

Если понадобится сделать не тест Манна-Уитни, как в примере, а t-test, то надо просто поменять в последней команде wilcox.test() на t.test().

BY Статистика и R в науке и аналитике


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/stats_for_science/67

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Telegram Messenger Blocks Navalny Bot During Russian Election On Feb. 27, however, he admitted from his Russian-language account that "Telegram channels are increasingly becoming a source of unverified information related to Ukrainian events." At its heart, Telegram is little more than a messaging app like WhatsApp or Signal. But it also offers open channels that enable a single user, or a group of users, to communicate with large numbers in a method similar to a Twitter account. This has proven to be both a blessing and a curse for Telegram and its users, since these channels can be used for both good and ill. Right now, as Wired reports, the app is a key way for Ukrainians to receive updates from the government during the invasion. If you initiate a Secret Chat, however, then these communications are end-to-end encrypted and are tied to the device you are using. That means it’s less convenient to access them across multiple platforms, but you are at far less risk of snooping. Back in the day, Secret Chats received some praise from the EFF, but the fact that its standard system isn’t as secure earned it some criticism. If you’re looking for something that is considered more reliable by privacy advocates, then Signal is the EFF’s preferred platform, although that too is not without some caveats. "There is a significant risk of insider threat or hacking of Telegram systems that could expose all of these chats to the Russian government," said Eva Galperin with the Electronic Frontier Foundation, which has called for Telegram to improve its privacy practices.
from ms


Telegram Статистика и R в науке и аналитике
FROM American