Telegram Group & Telegram Channel
Минутка гомотопической суеты

Я пойду дорогой той где никто не проходил


Будем говорить, что пространство X имеет конечный тип, если все группы π_n(X) конечно порождены. (Если X односвязно, то гомотопические группы можно заменить на целочисленные гомологии, а ещё тогда у X есть CW-модель, у которой в каждой размерности конечное число клеток.)

Определим четыре класса:

W := класс односвязных топологических пространств конечного типа, гомотопически эквивалентных букетам сфер;

P+ := класс связных топологических пространств конечного типа, гомотопически эквивалентных произведениям сфер и петель на сферах;

P := класс связных топологических пространств конечного типа, гомотопически эквивалентных произведениям S^1, S^3, S^7 и петель на сферах;

P- := класс связных топологических пространств конечного типа, гомотопически эквивалентных произведениям петель на сферах.

(Здесь "петли на сферах" — это пространства вида ΩS^n. Все произведения и букеты могут быть бесконечными, но из слов "конечного типа" следует, что в каждой размерности их конечное число. Например, всякое пространство из W выглядит как букет, содержащий для каждого n>1 по B_n копий n-мерной сферы, где B_n≥0 любые конечные)



group-telegram.com/sweet_homotopy/2032
Create:
Last Update:

Минутка гомотопической суеты

Я пойду дорогой той где никто не проходил


Будем говорить, что пространство X имеет конечный тип, если все группы π_n(X) конечно порождены. (Если X односвязно, то гомотопические группы можно заменить на целочисленные гомологии, а ещё тогда у X есть CW-модель, у которой в каждой размерности конечное число клеток.)

Определим четыре класса:

W := класс односвязных топологических пространств конечного типа, гомотопически эквивалентных букетам сфер;

P+ := класс связных топологических пространств конечного типа, гомотопически эквивалентных произведениям сфер и петель на сферах;

P := класс связных топологических пространств конечного типа, гомотопически эквивалентных произведениям S^1, S^3, S^7 и петель на сферах;

P- := класс связных топологических пространств конечного типа, гомотопически эквивалентных произведениям петель на сферах.

(Здесь "петли на сферах" — это пространства вида ΩS^n. Все произведения и букеты могут быть бесконечными, но из слов "конечного типа" следует, что в каждой размерности их конечное число. Например, всякое пространство из W выглядит как букет, содержащий для каждого n>1 по B_n копий n-мерной сферы, где B_n≥0 любые конечные)

BY сладко стянул


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/sweet_homotopy/2032

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Founder Pavel Durov says tech is meant to set you free But Kliuchnikov, the Ukranian now in France, said he will use Signal or WhatsApp for sensitive conversations, but questions around privacy on Telegram do not give him pause when it comes to sharing information about the war. However, the perpetrators of such frauds are now adopting new methods and technologies to defraud the investors. This ability to mix the public and the private, as well as the ability to use bots to engage with users has proved to be problematic. In early 2021, a database selling phone numbers pulled from Facebook was selling numbers for $20 per lookup. Similarly, security researchers found a network of deepfake bots on the platform that were generating images of people submitted by users to create non-consensual imagery, some of which involved children.
from ms


Telegram сладко стянул
FROM American