group-telegram.com/sweet_homotopy/2035
Last Update:
Замыкается петля и в середине неё я
Доказательство утверждения 1:
Если X односвязно и букет сфер, то ΩX — это ΩΣ(букет сфер). По теореме Хилтона—Милнора, такое пространство — это произведение пространств вида ΩΣ(смэш сфер) = ΩS^n для некоторого n.
Доказательство утверждения 2:
Если X — произведение сфер и петель на сферах, то по формуле для надстройки над произведением ΣX — это букет надстроек над пространствами вида "смэш сфер и петель над сферами". Мы хотим доказать, что каждая такая надстройка — букет сфер.
Действительно: ΣΩS^n = ΣΩΣS^{n-1} = S^n v S^{2n-1} v ... из расщепления Джеймса. Поочерёдно засовывая надстройку в каждый сомножитель вида ΩS^n в смэше, можно с помощью сигм истребить всех омег. В итоге останется букет надстроек над смэшем букетов сфер, а это букет сфер.
Доказательство утверждения 3: это несложно, см. Lemma 3.1 в https://arxiv.org/abs/2006.16320 или ниже
Доказательство утверждения 4: это сложнее, см. Theorem 3.10 в https://arxiv.org/abs/2306.12814
Доказательство утверждения 5: действительно, на ретракте H-пространства возникает структура H-пространства. Значит, если ΩY∈ P+ содержит сомножитель S^n, то на S^n возникает структура H-пространства. Адамс доказал, что при n≠1,3,7 так не бывает.
Доказательство утверждения 6:
Если ΩΣX ∈ P+, то ΣΩΣX ∈ W по утверждению 2. При этом ΣX — ретракт пространства ΣΩΣX по расщеплению Джеймса, а W замкнуто относительно ретрактов по утверждению 3. Значит, ΣX∈ W. Теперь ΩΣX ∈ P- по утверждению 1.
BY сладко стянул
Share with your friend now:
group-telegram.com/sweet_homotopy/2035