Telegram Group & Telegram Channel
Forwarded from The Layer (Irina Tolstykh)
В недавнем исследовании про таргетированный AI-фишинг авторы собирали информацию в интернете о человеке, с помощью GPT-4o и Claude 3.5 Sonnet составляли его профиль, на основе которого генерировали персонализированные фишинговые сообщения. Что интересно, в 88% случаев профили оказывались точными и полезными, а click-rate на ссылки в автоматически сгенерированных письмах составил 54%. Это значение совпало с click-rate для писем, написанных человеком-экспертом. В аналогичных же исследованиях прошлого года, чтобы достичь уровня экспертов, моделям требовалось участие человека.

Результаты лишний раз подчеркивают необходимость создания и улучшения детекторов сгенерированного контента.

LLM модели совершенствуют свои «‎обманные способности»‎, а мы продолжаем совершенствовать нашу модель детектирования для русскоязычных текстов GigaCheck. Обновленная версия уже доступна в нашем Telegram-боте. Кроме того, мы добавили нашу новую модель (находится на стадии бета-тестирования), которая умеет определять в co-written текстах фрагменты текста, созданные LLM. Вы можете легко переключать модели через команду /model.
Напомним, что используемый нами подход для детекции интервалов основан на архитектуре DN-DAB-DETR, подробнее можно почитать в опубликованной нами статье, про которую мы писали в этом посте.

Заходите в бот, тестируйте, и не дайте злоумышленникам вас обмануть! 😊



group-telegram.com/tech_priestess/1971
Create:
Last Update:

В недавнем исследовании про таргетированный AI-фишинг авторы собирали информацию в интернете о человеке, с помощью GPT-4o и Claude 3.5 Sonnet составляли его профиль, на основе которого генерировали персонализированные фишинговые сообщения. Что интересно, в 88% случаев профили оказывались точными и полезными, а click-rate на ссылки в автоматически сгенерированных письмах составил 54%. Это значение совпало с click-rate для писем, написанных человеком-экспертом. В аналогичных же исследованиях прошлого года, чтобы достичь уровня экспертов, моделям требовалось участие человека.

Результаты лишний раз подчеркивают необходимость создания и улучшения детекторов сгенерированного контента.

LLM модели совершенствуют свои «‎обманные способности»‎, а мы продолжаем совершенствовать нашу модель детектирования для русскоязычных текстов GigaCheck. Обновленная версия уже доступна в нашем Telegram-боте. Кроме того, мы добавили нашу новую модель (находится на стадии бета-тестирования), которая умеет определять в co-written текстах фрагменты текста, созданные LLM. Вы можете легко переключать модели через команду /model.
Напомним, что используемый нами подход для детекции интервалов основан на архитектуре DN-DAB-DETR, подробнее можно почитать в опубликованной нами статье, про которую мы писали в этом посте.

Заходите в бот, тестируйте, и не дайте злоумышленникам вас обмануть! 😊

BY Техножрица 👩‍💻👩‍🏫👩‍🔧




Share with your friend now:
group-telegram.com/tech_priestess/1971

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Although some channels have been removed, the curation process is considered opaque and insufficient by analysts. So, uh, whenever I hear about Telegram, it’s always in relation to something bad. What gives? In the past, it was noticed that through bulk SMSes, investors were induced to invest in or purchase the stocks of certain listed companies. Now safely in France with his spouse and three of his children, Kliuchnikov scrolls through Telegram to learn about the devastation happening in his home country. Oh no. There’s a certain degree of myth-making around what exactly went on, so take everything that follows lightly. Telegram was originally launched as a side project by the Durov brothers, with Nikolai handling the coding and Pavel as CEO, while both were at VK.
from ms


Telegram Техножрица 👩‍💻👩‍🏫👩‍🔧
FROM American