Telegram Group & Telegram Channel
Кай-Фу Ли объявил войну Nvidia и всей ИИ-экосистеме США.
И судя по его последним достижениям, шансы победить есть.

Потрясающе интересное выступление китайского ИИ гуру Кай-Фу Ли будут теперь долго обсуждать. Это абсолютно революционное выступление, прозвучавшее на закрытой дискуссии Collective[i] Forecast, Ли посвятил трем темам.
1. ИИ-экосистема США (основа мировой ИИ-экосистемы) «невероятно больна». Её необходимо кардинально перестроить, иначе на реальном (практическом) прогрессе ИИ можно ставить крест.
Сегодня ИИ-экосистема состоит из Nvidia и мелких производителей ИИ чипов. При этом производители чипов для ИИ зарабатывают сейчас в год $75 млрд, а вендоры ИИ-инфраструктуры – лишь $10 млрд и вендоры ИИ-приложений — лишь $5 млрд».
«Если мы продолжим работать в этой перевернутой пирамиде, это станет проблемой» — сказал Ли. Т.к. это беспрецедентный переворот в экономике классической технологической отрасли. Традиционно производители приложений получают больше, чем поставщики чипов и систем (напр. Salesforce, внедряя CRM, получает куда больше, чем Dell и Intel, производящие компьютеры и чипы для запуска CRM в облаке)
Оздоровить ИИ-экосистему может лишь создание ИИ-компаниями собственных вертикальных интегрированных технологических стеков, как это сделала Apple с iPhone. Только так станет возможным значительно снизить стоимость генеративного ИИ.
2. Главным направление в разработке моделей должно стать снижение стоимости вывода – это самое важное для создания востребованных бизнесом приложений с ИИ.
Сегодняшняя стандартная стоимость сервиса типа GPT-4 составляет $4,40 за млн токенов. Это эквивалентно 57 центам за запрос —и это непростительно дорого, ибо поисковый запрос в Google (без всякого ИИ) обойдется в 180 раз дешевле.
3. Вторым важнейшим направлением в разработке моделей должен стать переход от универсальных базовых моделей к «экспертным моделям».
Бизнесу нужны не универсальные модели, обученные на океанах неразмеченных данных, собранных из Интернета и других источников. Подход «экспертных моделей» подразумевает создание множества нейронок, обученных на отраслевых данных. Это может обеспечить достижение того же уровня «интеллекта», что и универсальная базовая модель, при использовании гораздо меньшей вычислительной мощности.

Самое потрясающее, что все 3 пункта – это не предложения, основанные на предположениях. Стартап Кай-Фу Ли «01.ai» уже делает все это на практике.
И не просто делает, а уже добивается уникальных результатов.

• Их новая модель Yi-Lightning занимает 6-е место в мире (выше выпущенной 5 мес назад GPT-4o). Но при этом это очень маленькая модель, которая чрезвычайно быстра и недорога (всего $0,14 за млн токенов ). Её производительность сопоставима с Grok-2. Но она обучалась всего на 2000 H100 в течение 1 месяца. Что демонстрирует ненужность 100 тыс H100 и ярдов затрат (обучение Yi-Lightning стоило всего $3 млн).
01.ai применяет «экспертный» подход к сбору данных. И хотя «инженерам приходится проводить массу неблагодарной черновой работы» по маркировке и ранжированию данных, но – как считает Ли, - Китай с его резервом дешевых инженерных кадров может сделать это лучше, чем США.
• И даже в создании собственного вертикального интегрированного техно-стека есть прогресс. Напр, за счет использования собственных аппаратных инноваций, стоимость одного запроса к ИИ-поисковику BeaGo составляет всего около 1 цента (что приблизилось к стоимости запроса Google без всякого ИИ)

И еще 3 цитаты Ли:

Сила Китая не в том, чтобы делать лучшие прорывные исследования, которые никто не делал раньше, с бюджетом без ограничений. Сила Китая в том, чтобы построить хорошо, быстро, надежно и при этом дешево.

Для предприятий новое поколение ИИ станет их мозгом, а не периферийными приблудами. Для нефтяных компании ИИ будет добывать нефть. Для финансовых — зарабатывать на деньгах.

Для потребителей сегодняшняя модель смартфона, скорее всего, исчезнет.


А ведь еще 1.5 года назад Ли предупреждал - Китай не станет догонять США в ИИ, а сразу пойдет на обгон.

#ИИгонка #Китай



group-telegram.com/theworldisnoteasy/2025
Create:
Last Update:

Кай-Фу Ли объявил войну Nvidia и всей ИИ-экосистеме США.
И судя по его последним достижениям, шансы победить есть.

Потрясающе интересное выступление китайского ИИ гуру Кай-Фу Ли будут теперь долго обсуждать. Это абсолютно революционное выступление, прозвучавшее на закрытой дискуссии Collective[i] Forecast, Ли посвятил трем темам.
1. ИИ-экосистема США (основа мировой ИИ-экосистемы) «невероятно больна». Её необходимо кардинально перестроить, иначе на реальном (практическом) прогрессе ИИ можно ставить крест.
Сегодня ИИ-экосистема состоит из Nvidia и мелких производителей ИИ чипов. При этом производители чипов для ИИ зарабатывают сейчас в год $75 млрд, а вендоры ИИ-инфраструктуры – лишь $10 млрд и вендоры ИИ-приложений — лишь $5 млрд».
«Если мы продолжим работать в этой перевернутой пирамиде, это станет проблемой» — сказал Ли. Т.к. это беспрецедентный переворот в экономике классической технологической отрасли. Традиционно производители приложений получают больше, чем поставщики чипов и систем (напр. Salesforce, внедряя CRM, получает куда больше, чем Dell и Intel, производящие компьютеры и чипы для запуска CRM в облаке)
Оздоровить ИИ-экосистему может лишь создание ИИ-компаниями собственных вертикальных интегрированных технологических стеков, как это сделала Apple с iPhone. Только так станет возможным значительно снизить стоимость генеративного ИИ.
2. Главным направление в разработке моделей должно стать снижение стоимости вывода – это самое важное для создания востребованных бизнесом приложений с ИИ.
Сегодняшняя стандартная стоимость сервиса типа GPT-4 составляет $4,40 за млн токенов. Это эквивалентно 57 центам за запрос —и это непростительно дорого, ибо поисковый запрос в Google (без всякого ИИ) обойдется в 180 раз дешевле.
3. Вторым важнейшим направлением в разработке моделей должен стать переход от универсальных базовых моделей к «экспертным моделям».
Бизнесу нужны не универсальные модели, обученные на океанах неразмеченных данных, собранных из Интернета и других источников. Подход «экспертных моделей» подразумевает создание множества нейронок, обученных на отраслевых данных. Это может обеспечить достижение того же уровня «интеллекта», что и универсальная базовая модель, при использовании гораздо меньшей вычислительной мощности.

Самое потрясающее, что все 3 пункта – это не предложения, основанные на предположениях. Стартап Кай-Фу Ли «01.ai» уже делает все это на практике.
И не просто делает, а уже добивается уникальных результатов.

• Их новая модель Yi-Lightning занимает 6-е место в мире (выше выпущенной 5 мес назад GPT-4o). Но при этом это очень маленькая модель, которая чрезвычайно быстра и недорога (всего $0,14 за млн токенов ). Её производительность сопоставима с Grok-2. Но она обучалась всего на 2000 H100 в течение 1 месяца. Что демонстрирует ненужность 100 тыс H100 и ярдов затрат (обучение Yi-Lightning стоило всего $3 млн).
01.ai применяет «экспертный» подход к сбору данных. И хотя «инженерам приходится проводить массу неблагодарной черновой работы» по маркировке и ранжированию данных, но – как считает Ли, - Китай с его резервом дешевых инженерных кадров может сделать это лучше, чем США.
• И даже в создании собственного вертикального интегрированного техно-стека есть прогресс. Напр, за счет использования собственных аппаратных инноваций, стоимость одного запроса к ИИ-поисковику BeaGo составляет всего около 1 цента (что приблизилось к стоимости запроса Google без всякого ИИ)

И еще 3 цитаты Ли:

Сила Китая не в том, чтобы делать лучшие прорывные исследования, которые никто не делал раньше, с бюджетом без ограничений. Сила Китая в том, чтобы построить хорошо, быстро, надежно и при этом дешево.

Для предприятий новое поколение ИИ станет их мозгом, а не периферийными приблудами. Для нефтяных компании ИИ будет добывать нефть. Для финансовых — зарабатывать на деньгах.

Для потребителей сегодняшняя модель смартфона, скорее всего, исчезнет.


А ведь еще 1.5 года назад Ли предупреждал - Китай не станет догонять США в ИИ, а сразу пойдет на обгон.

#ИИгонка #Китай

BY Малоизвестное интересное




Share with your friend now:
group-telegram.com/theworldisnoteasy/2025

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The channel appears to be part of the broader information war that has developed following Russia's invasion of Ukraine. The Kremlin has paid Russian TikTok influencers to push propaganda, according to a Vice News investigation, while ProPublica found that fake Russian fact check videos had been viewed over a million times on Telegram. Groups are also not fully encrypted, end-to-end. This includes private groups. Private groups cannot be seen by other Telegram users, but Telegram itself can see the groups and all of the communications that you have in them. All of the same risks and warnings about channels can be applied to groups. Soloviev also promoted the channel in a post he shared on his own Telegram, which has 580,000 followers. The post recommended his viewers subscribe to "War on Fakes" in a time of fake news. WhatsApp, a rival messaging platform, introduced some measures to counter disinformation when Covid-19 was first sweeping the world. Telegram has gained a reputation as the “secure” communications app in the post-Soviet states, but whenever you make choices about your digital security, it’s important to start by asking yourself, “What exactly am I securing? And who am I securing it from?” These questions should inform your decisions about whether you are using the right tool or platform for your digital security needs. Telegram is certainly not the most secure messaging app on the market right now. Its security model requires users to place a great deal of trust in Telegram’s ability to protect user data. For some users, this may be good enough for now. For others, it may be wiser to move to a different platform for certain kinds of high-risk communications.
from ms


Telegram Малоизвестное интересное
FROM American