Traditional models assume a simple rule: people connect with others like them. But our research goes further. We’ve created a model that separates local homophily—strong bonds within close-knit groups—from global homophily, the weaker links across broader communities. This distinction helps explain complex social behaviors and how they impact network dynamics.
Using a maximum entropy approach, our model quantifies these layers of homophily and their influence on networks. One key finding is that different levels of homophily lead to unique percolation behaviors—shifts in how networks stay connected or fragment under certain conditions. We also discovered that these interactions affect critical thresholds for spreading phenomena, from viral outbreaks to information diffusion.
By applying our model to diverse real-world datasets, we demonstrated its ability to capture fine-grained patterns in networks. The insights go beyond theory—they have real implications for designing better public health interventions, optimizing information campaigns, and understanding the role of community structures in amplifying or limiting spread.
So, if you are looking for a network model that distinguishes between [local] homophily within small groups and [global] homophily across larger, more diverse communities, you shall not miss our new pre-print: https://arxiv.org/abs/2412.07901
Traditional models assume a simple rule: people connect with others like them. But our research goes further. We’ve created a model that separates local homophily—strong bonds within close-knit groups—from global homophily, the weaker links across broader communities. This distinction helps explain complex social behaviors and how they impact network dynamics.
Using a maximum entropy approach, our model quantifies these layers of homophily and their influence on networks. One key finding is that different levels of homophily lead to unique percolation behaviors—shifts in how networks stay connected or fragment under certain conditions. We also discovered that these interactions affect critical thresholds for spreading phenomena, from viral outbreaks to information diffusion.
By applying our model to diverse real-world datasets, we demonstrated its ability to capture fine-grained patterns in networks. The insights go beyond theory—they have real implications for designing better public health interventions, optimizing information campaigns, and understanding the role of community structures in amplifying or limiting spread.
So, if you are looking for a network model that distinguishes between [local] homophily within small groups and [global] homophily across larger, more diverse communities, you shall not miss our new pre-print: https://arxiv.org/abs/2412.07901
BY Complex Systems Studies
Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260
"The inflation fire was already hot and now with war-driven inflation added to the mix, it will grow even hotter, setting off a scramble by the world’s central banks to pull back their stimulus earlier than expected," Chris Rupkey, chief economist at FWDBONDS, wrote in an email. "A spike in inflation rates has preceded economic recessions historically and this time prices have soared to levels that once again pose a threat to growth." The account, "War on Fakes," was created on February 24, the same day Russian President Vladimir Putin announced a "special military operation" and troops began invading Ukraine. The page is rife with disinformation, according to The Atlantic Council's Digital Forensic Research Lab, which studies digital extremism and published a report examining the channel. He floated the idea of restricting the use of Telegram in Ukraine and Russia, a suggestion that was met with fierce opposition from users. Shortly after, Durov backed off the idea. Under the Sebi Act, the regulator has the power to carry out search and seizure of books, registers, documents including electronics and digital devices from any person associated with the securities market. The War on Fakes channel has repeatedly attempted to push conspiracies that footage from Ukraine is somehow being falsified. One post on the channel from February 24 claimed without evidence that a widely viewed photo of a Ukrainian woman injured in an airstrike in the city of Chuhuiv was doctored and that the woman was seen in a different photo days later without injuries. The post, which has over 600,000 views, also baselessly claimed that the woman's blood was actually makeup or grape juice.
from nl