Telegram Group & Telegram Channel
Орги ChatBot Arena проанализировали, как Llama-3 забралась так высоко на лидерборде.

Llama 3, будучи сравнительно маленькой моделью отстаёт от GPT-4 на более сложных задачах, типа матеши и ризонинга, судя по анализу от Lmsys. Но вот в креативных задачах и более абстрактных задачах, где нужно что-то придумать (куда сходить вечером и тп) выигрывает старшие модели причём со значительным отрывом. Таких запросов от юзеров по всей видимости большинство, и именно они закидывают ламу3 в топ. Но это не отвечает на вопрос, как ей удаётся побеждать старшие модели на этих запросах. Кажется, что если модель лучше и больше, то она должна быть умнее во всем.

Так почему же llama 3 так хороша? Если коротко, то это компьют и качественные данные.

- Датасет фильтровали и фильтровали, чтобы модель училась только на всем хорошем. Кстати секрет той же Dalle 3 или GPT-4 в том же. У Dalle3 картинки в трейн датасете очень подробно описаны gpt-шкой с виженом. А для самой GPT-4, понятно, тоже сильно фильтровали тексты.

- Есть такая гипотеза – Оптимальность модели по Шиншилле. Из нее следует, что для 8B модели оптимально по компьюту натренить ее на 200B токенах. И долгое время это считалось стандартом – якобы дальше тренить мелкую модель смысла нет, и лучше взять модель пожирнее. Но Llama3 натренили на 15 трлн токенов и она всё ещё продолжала учиться. Крч перетрейн капитальный.

- Аккуратный файнтюн на ручной разметке. Кроме почти уже стандартных supervised fine-tuning (SFT), rejection sampling, proximal policy optimization (PPO), и direct preference optimization (DPO) парни скормили лламе3 10 лямов размеченных вручную примеров.

Окей, с тяжелыми тасками она всё равно не очень справляется. Но, оказывается, это и не надо...🤷‍♀️

Юзеры обычно просят какую-нибудь фигню по типу "придумай то то, как сделать это..."
Лама благодаря хорошему датасету и ручному файнтюну просто оказалась очень харизматичной. Отвечает приятно, структура хорошая, на человека похожа:)

High-level Видосик про Llama3
Предыдущий пост про Llama3
Блог пост

@ai_newz



group-telegram.com/ai_newz/2688
Create:
Last Update:

Орги ChatBot Arena проанализировали, как Llama-3 забралась так высоко на лидерборде.

Llama 3, будучи сравнительно маленькой моделью отстаёт от GPT-4 на более сложных задачах, типа матеши и ризонинга, судя по анализу от Lmsys. Но вот в креативных задачах и более абстрактных задачах, где нужно что-то придумать (куда сходить вечером и тп) выигрывает старшие модели причём со значительным отрывом. Таких запросов от юзеров по всей видимости большинство, и именно они закидывают ламу3 в топ. Но это не отвечает на вопрос, как ей удаётся побеждать старшие модели на этих запросах. Кажется, что если модель лучше и больше, то она должна быть умнее во всем.

Так почему же llama 3 так хороша? Если коротко, то это компьют и качественные данные.

- Датасет фильтровали и фильтровали, чтобы модель училась только на всем хорошем. Кстати секрет той же Dalle 3 или GPT-4 в том же. У Dalle3 картинки в трейн датасете очень подробно описаны gpt-шкой с виженом. А для самой GPT-4, понятно, тоже сильно фильтровали тексты.

- Есть такая гипотеза – Оптимальность модели по Шиншилле. Из нее следует, что для 8B модели оптимально по компьюту натренить ее на 200B токенах. И долгое время это считалось стандартом – якобы дальше тренить мелкую модель смысла нет, и лучше взять модель пожирнее. Но Llama3 натренили на 15 трлн токенов и она всё ещё продолжала учиться. Крч перетрейн капитальный.

- Аккуратный файнтюн на ручной разметке. Кроме почти уже стандартных supervised fine-tuning (SFT), rejection sampling, proximal policy optimization (PPO), и direct preference optimization (DPO) парни скормили лламе3 10 лямов размеченных вручную примеров.

Окей, с тяжелыми тасками она всё равно не очень справляется. Но, оказывается, это и не надо...🤷‍♀️

Юзеры обычно просят какую-нибудь фигню по типу "придумай то то, как сделать это..."
Лама благодаря хорошему датасету и ручному файнтюну просто оказалась очень харизматичной. Отвечает приятно, структура хорошая, на человека похожа:)

High-level Видосик про Llama3
Предыдущий пост про Llama3
Блог пост

@ai_newz

BY эйай ньюз







Share with your friend now:
group-telegram.com/ai_newz/2688

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

"We're seeing really dramatic moves, and it's all really tied to Ukraine right now, and in a secondary way, in terms of interest rates," Octavio Marenzi, CEO of Opimas, told Yahoo Finance Live on Thursday. "This war in Ukraine is going to give the Fed the ammunition, the cover that it needs, to not raise interest rates too quickly. And I think Jay Powell is a very tepid sort of inflation fighter and he's not going to do as much as he needs to do to get that under control. And this seems like an excuse to kick the can further down the road still and not do too much too soon." The Dow Jones Industrial Average fell 230 points, or 0.7%. Meanwhile, the S&P 500 and the Nasdaq Composite dropped 1.3% and 2.2%, respectively. All three indexes began the day with gains before selling off. Anastasia Vlasova/Getty Images During the operations, Sebi officials seized various records and documents, including 34 mobile phones, six laptops, four desktops, four tablets, two hard drive disks and one pen drive from the custody of these persons. Russians and Ukrainians are both prolific users of Telegram. They rely on the app for channels that act as newsfeeds, group chats (both public and private), and one-to-one communication. Since the Russian invasion of Ukraine, Telegram has remained an important lifeline for both Russians and Ukrainians, as a way of staying aware of the latest news and keeping in touch with loved ones.
from nl


Telegram эйай ньюз
FROM American