Telegram Group & Telegram Channel
▶️ Продолжение

Начнем с Сollaborative opportunity discovery - что это такое?
Это процесс, с которого каждая data инициатива обязательно должна начинаться. В нем дата-специалисты совместно с C-level лидерами и обычными сотрудниками находят те юз-кейсы, где данные и AI могут решить значительную бизнес-проблему или предоставить компании возможность для роста.

В прошлом главная проблема была в том, что дата-сайентисты часто брались за проекты, которые на самом деле не особо нужны бизнесу. Не редко это происходило из-за shiny-object синдрома, который вспыхивает когда релизелась новая SOTA (state-of-the-art) модель и хочется с ней поэкспериментировать, независимо от того, подходит ли модель для решения важных бизнес-проблем или нет. Типа, выходит новая крутая модель, и все такие: "Ооо, давайте ее попробуем!" (Кто из ML-инженеров такое никогда не испытывал, тот пусть первый бросит в меня камень! 🥸).

Раньше opportunity discovery было (и до сих пор часто является) обязанностью только data команды. Но это неправильный подход, потому что эти команды чаще всего близки только к data science workflow, а для бизнеса и клиентов они часто как чужие. Особенно опасно, если специалисты этого не осознают – это происходит когда дата-специалисты собрали такое огромное количество данных, что сами начинают чувствовать себя экспертами в бизнесе. Частый результат – это так называемые инсайты от Капитана Очевидности, которые не имеют никакой бизнес-ценности, но добыча которых требовала большого количество времени. Общая картина получалась такой: ещё в 2020 году MIT Sloan Management Review и BCG сообщали, что, хоть 60% компаний и внедрили какую-то форму AI, только 10% достигли значительной финансовой отдачи.

Как правильно проводить opportunity discovery? Opportunity discovery состоит из двух частей: Top-down и Bottom-up.

📌 Top-down opportunity discovery – это коллаборация между data specialists и C-level лидерами. Data команды определяют, какие бизнес процессы, связанные с каждой целью, предоставленной C-level, они могли бы оптимизировать, чтобы принести компании ценность. Потом необходимо найти экспертов по этим процессам и выявить болевые точки и потребности.

📌 Bottom-up opportunity discovery – это коллаборация между спецами по данным и обычными работниками. Для технических команд часто является стандартом просто выполнять то, что напрямую от них требует компания. Но сейчас планка должна быть выше - достижение бизнес-результатов, через фундаментальное понимание нужд компании и проактивное предложение как это осуществить технически. Этот процесс сосредоточен на оценке текущего состояния бизнеса и выявлении короткосрочных возможностей для компании. По сравнению с Top-Down opportunities, bottom-up – это более постепенные улучшения существующих продуктов и они проще в реализации, чем то, что обычно получается из Top-Down discovery.

Мы будем, конечно, продолжать эту серию.
Но чтобы не зацикливаться на одной и той же теме и время от времени «переключаться», в следующем посте я хочу открыть новую рубрику: 🔥
разбор AI-продуктов с обеих сторон - технической (какие модели и технологии используются) и бизнесовой (как это монетизируется, кто целевая аудитория и т.д.).

Думаю, будет очень интересно пообсуждать это вместе! До скорого!

#datapm #aipm
@ainastia
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/ainastia/27
Create:
Last Update:

▶️ Продолжение

Начнем с Сollaborative opportunity discovery - что это такое?
Это процесс, с которого каждая data инициатива обязательно должна начинаться. В нем дата-специалисты совместно с C-level лидерами и обычными сотрудниками находят те юз-кейсы, где данные и AI могут решить значительную бизнес-проблему или предоставить компании возможность для роста.

В прошлом главная проблема была в том, что дата-сайентисты часто брались за проекты, которые на самом деле не особо нужны бизнесу. Не редко это происходило из-за shiny-object синдрома, который вспыхивает когда релизелась новая SOTA (state-of-the-art) модель и хочется с ней поэкспериментировать, независимо от того, подходит ли модель для решения важных бизнес-проблем или нет. Типа, выходит новая крутая модель, и все такие: "Ооо, давайте ее попробуем!" (Кто из ML-инженеров такое никогда не испытывал, тот пусть первый бросит в меня камень! 🥸).

Раньше opportunity discovery было (и до сих пор часто является) обязанностью только data команды. Но это неправильный подход, потому что эти команды чаще всего близки только к data science workflow, а для бизнеса и клиентов они часто как чужие. Особенно опасно, если специалисты этого не осознают – это происходит когда дата-специалисты собрали такое огромное количество данных, что сами начинают чувствовать себя экспертами в бизнесе. Частый результат – это так называемые инсайты от Капитана Очевидности, которые не имеют никакой бизнес-ценности, но добыча которых требовала большого количество времени. Общая картина получалась такой: ещё в 2020 году MIT Sloan Management Review и BCG сообщали, что, хоть 60% компаний и внедрили какую-то форму AI, только 10% достигли значительной финансовой отдачи.

Как правильно проводить opportunity discovery? Opportunity discovery состоит из двух частей: Top-down и Bottom-up.

📌 Top-down opportunity discovery – это коллаборация между data specialists и C-level лидерами. Data команды определяют, какие бизнес процессы, связанные с каждой целью, предоставленной C-level, они могли бы оптимизировать, чтобы принести компании ценность. Потом необходимо найти экспертов по этим процессам и выявить болевые точки и потребности.

📌 Bottom-up opportunity discovery – это коллаборация между спецами по данным и обычными работниками. Для технических команд часто является стандартом просто выполнять то, что напрямую от них требует компания. Но сейчас планка должна быть выше - достижение бизнес-результатов, через фундаментальное понимание нужд компании и проактивное предложение как это осуществить технически. Этот процесс сосредоточен на оценке текущего состояния бизнеса и выявлении короткосрочных возможностей для компании. По сравнению с Top-Down opportunities, bottom-up – это более постепенные улучшения существующих продуктов и они проще в реализации, чем то, что обычно получается из Top-Down discovery.

Мы будем, конечно, продолжать эту серию.
Но чтобы не зацикливаться на одной и той же теме и время от времени «переключаться», в следующем посте я хочу открыть новую рубрику: 🔥
разбор AI-продуктов с обеих сторон - технической (какие модели и технологии используются) и бизнесовой (как это монетизируется, кто целевая аудитория и т.д.).

Думаю, будет очень интересно пообсуждать это вместе! До скорого!

#datapm #aipm
@ainastia

BY Anastasia.ai – Tech Entrepreneur in🇨🇭




Share with your friend now:
group-telegram.com/ainastia/27

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Ukrainian forces successfully attacked Russian vehicles in the capital city of Kyiv thanks to a public tip made through the encrypted messaging app Telegram, Ukraine's top law-enforcement agency said on Tuesday. Crude oil prices edged higher after tumbling on Thursday, when U.S. West Texas intermediate slid back below $110 per barrel after topping as much as $130 a barrel in recent sessions. Still, gas prices at the pump rose to fresh highs. The regulator took order for the search and seizure operation from Judge Purushottam B Jadhav, Sebi Special Judge / Additional Sessions Judge. Asked about its stance on disinformation, Telegram spokesperson Remi Vaughn told AFP: "As noted by our CEO, the sheer volume of information being shared on channels makes it extremely difficult to verify, so it's important that users double-check what they read."
from nl


Telegram Anastasia.ai – Tech Entrepreneur in🇨🇭
FROM American