Telegram Group & Telegram Channel
Contest

Пописал тут контест от телеграма https://www.group-telegram.com/contest/330. В целом задача -- всё, что написано в markup code в телеге -- определить, код ли это и какого языка программирования из 100 самых популярных. Как обычно, ни данных, ни условий тестирования не дали, классический телеграм.

Из уже существующий решений есть

* VSCode'овский https://github.com/yoeo/guesslang, прилагающий к нему https://github.com/yoeo/guesslangtools. Из хорошего, 55 языков поддерживает c 90%+ качеством, из плохого работает на больших кусках кода.

* Какая-то статья https://github.com/aliostad/deep-learning-lang-detection, утверждают 99%+ качества. Обучение у них на слишком хороших данных.

* Какие-то регексовские вещи, которые очевидно никогда не наберут 90%+ качества

Вторую я покрутил, повертел и получил тоже ~90% качества на средненьких таких данных.

Как брать данные

* https://libraries.io/
* https://huggingface.co/datasets/bigcode/the-stack
* https://sourcegraph.com/search -> Actions -> Export Results

В эпоху LLM, на hugging face собрали неплохой датасет, который я почему-то нашёл только в последние пару дней, чутка оттуда покачал, но особо много это не дало, а кластера для терабайтов у меня не было. В итоге использовал libraries.io и sourcegraph.

Собрал я 5M файлов, качал я это дело на 5TB машинке пару дней, github отдавал разным машинам в районе 50-100MB/s в зависимости проснулись ли прогеры из Сан Франциско :), много тротлили, но я их переиграл. Суммарно после дедупликации получилось 100GB кода.

Дальше начинается самое веселое. Из хорошего в файлах гитхаба есть расширение, которое почти однозначно определяет язык. Ага, конечно,

.hh -> C++ и Hack

.p -> Gnuplot и OpenEdgeABL

.fs -> Forth и F#

У гитхаба есть неплохой алгоритм детекции таких disputes: heuristics.yml на регулярных выражениях. Целый день я сидел и фильтровал данные, помимо добавлял языки программирования, которых Github не знает.

Например, FunC и FIFT. В целом видна человеческая рука здесь по добавлению 2 языков программирования от уважаемого Николая. По всему интернету файлов существует в районе 1000 и спасибо sourcegraph, который смог это всё найти. Но мусора в расширениях .fc и .fift было предостаточно, выфильтровали :)

Далее обучение. Я взял guesslang и чутка крутил batchsize, hidden dnn layers и получил в среднем 88% аккуратности и 92.5% на топ50 самых популярных языках

В конце начинается самое интересное, а собственно, как достать markup comments телеграма? К сожалению, датасетов почти нет, tgstat.ru не сохраняет информацию об этом. Я покачал каких-то прогерских community и докручивал на маленьких данных.

Самое плохое, что лучше всего сработало при маленьких кусках кода просто повторить его, пока не станет 30-40 строк кода. От таких положений вещей модель начинала сходиться к правильным ответам чаще.

Ещё, конечно, не забывайте, что любой текст это Markdown, поэтому чтобы различить одно от другого надо постараться. Докручивали уже disputes какими-то регекспами из heuristics.yml и логикой, мол, если строк мало, то вряд ли это эзотерический язык. Всё равно люди компилируют C код как C++, а Hack почти в природе нет, кроме как у Meta.

Самое сложное в конце было найти баланс, а что в общем-то авторы, хотят, что они вообще будут тестировать и какое распределение у всего и вся. Скорее всего будет 95% не языков программирования.

Последние полдня потратил на то, чтобы собрать tensorflow C++ с нуля и вкомпилить в .so, потому что принимать ничего другого они не хотят. Ну что ж, значит tensorflow. Скомпилировал. Отправил 600Mb .so файл.

Зато более менее работает, 2-3 ms на 4kb.

Делал я это дело 7-8 дней, из которых 3 полных часов по 10, ещё часа по 3-4 вечерами в оставшиеся дни.

Что будет, то будет. Ради фана и узнать что-то новое делал. Узнал о многих языках программирования вроде Raku, ICON, Keyman, LOGO.

И получайте почти красивую картинку confusion matrix.



group-telegram.com/experimentalchill/258
Create:
Last Update:

Contest

Пописал тут контест от телеграма https://www.group-telegram.com/contest/330. В целом задача -- всё, что написано в markup code в телеге -- определить, код ли это и какого языка программирования из 100 самых популярных. Как обычно, ни данных, ни условий тестирования не дали, классический телеграм.

Из уже существующий решений есть

* VSCode'овский https://github.com/yoeo/guesslang, прилагающий к нему https://github.com/yoeo/guesslangtools. Из хорошего, 55 языков поддерживает c 90%+ качеством, из плохого работает на больших кусках кода.

* Какая-то статья https://github.com/aliostad/deep-learning-lang-detection, утверждают 99%+ качества. Обучение у них на слишком хороших данных.

* Какие-то регексовские вещи, которые очевидно никогда не наберут 90%+ качества

Вторую я покрутил, повертел и получил тоже ~90% качества на средненьких таких данных.

Как брать данные

* https://libraries.io/
* https://huggingface.co/datasets/bigcode/the-stack
* https://sourcegraph.com/search -> Actions -> Export Results

В эпоху LLM, на hugging face собрали неплохой датасет, который я почему-то нашёл только в последние пару дней, чутка оттуда покачал, но особо много это не дало, а кластера для терабайтов у меня не было. В итоге использовал libraries.io и sourcegraph.

Собрал я 5M файлов, качал я это дело на 5TB машинке пару дней, github отдавал разным машинам в районе 50-100MB/s в зависимости проснулись ли прогеры из Сан Франциско :), много тротлили, но я их переиграл. Суммарно после дедупликации получилось 100GB кода.

Дальше начинается самое веселое. Из хорошего в файлах гитхаба есть расширение, которое почти однозначно определяет язык. Ага, конечно,

.hh -> C++ и Hack

.p -> Gnuplot и OpenEdgeABL

.fs -> Forth и F#

У гитхаба есть неплохой алгоритм детекции таких disputes: heuristics.yml на регулярных выражениях. Целый день я сидел и фильтровал данные, помимо добавлял языки программирования, которых Github не знает.

Например, FunC и FIFT. В целом видна человеческая рука здесь по добавлению 2 языков программирования от уважаемого Николая. По всему интернету файлов существует в районе 1000 и спасибо sourcegraph, который смог это всё найти. Но мусора в расширениях .fc и .fift было предостаточно, выфильтровали :)

Далее обучение. Я взял guesslang и чутка крутил batchsize, hidden dnn layers и получил в среднем 88% аккуратности и 92.5% на топ50 самых популярных языках

В конце начинается самое интересное, а собственно, как достать markup comments телеграма? К сожалению, датасетов почти нет, tgstat.ru не сохраняет информацию об этом. Я покачал каких-то прогерских community и докручивал на маленьких данных.

Самое плохое, что лучше всего сработало при маленьких кусках кода просто повторить его, пока не станет 30-40 строк кода. От таких положений вещей модель начинала сходиться к правильным ответам чаще.

Ещё, конечно, не забывайте, что любой текст это Markdown, поэтому чтобы различить одно от другого надо постараться. Докручивали уже disputes какими-то регекспами из heuristics.yml и логикой, мол, если строк мало, то вряд ли это эзотерический язык. Всё равно люди компилируют C код как C++, а Hack почти в природе нет, кроме как у Meta.

Самое сложное в конце было найти баланс, а что в общем-то авторы, хотят, что они вообще будут тестировать и какое распределение у всего и вся. Скорее всего будет 95% не языков программирования.

Последние полдня потратил на то, чтобы собрать tensorflow C++ с нуля и вкомпилить в .so, потому что принимать ничего другого они не хотят. Ну что ж, значит tensorflow. Скомпилировал. Отправил 600Mb .so файл.

Зато более менее работает, 2-3 ms на 4kb.

Делал я это дело 7-8 дней, из которых 3 полных часов по 10, ещё часа по 3-4 вечерами в оставшиеся дни.

Что будет, то будет. Ради фана и узнать что-то новое делал. Узнал о многих языках программирования вроде Raku, ICON, Keyman, LOGO.

И получайте почти красивую картинку confusion matrix.

BY Experimental chill


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/experimentalchill/258

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The fake Zelenskiy account reached 20,000 followers on Telegram before it was shut down, a remedial action that experts say is all too rare. But because group chats and the channel features are not end-to-end encrypted, Galperin said user privacy is potentially under threat. As such, the SC would like to remind investors to always exercise caution when evaluating investment opportunities, especially those promising unrealistically high returns with little or no risk. Investors should also never deposit money into someone’s personal bank account if instructed. On Telegram’s website, it says that Pavel Durov “supports Telegram financially and ideologically while Nikolai (Duvov)’s input is technological.” Currently, the Telegram team is based in Dubai, having moved around from Berlin, London and Singapore after departing Russia. Meanwhile, the company which owns Telegram is registered in the British Virgin Islands. And while money initially moved into stocks in the morning, capital moved out of safe-haven assets. The price of the 10-year Treasury note fell Friday, sending its yield up to 2% from a March closing low of 1.73%.
from nl


Telegram Experimental chill
FROM American