Warning: mkdir(): No space left on device in /var/www/group-telegram/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/gonzo_ML/--): Failed to open stream: No such file or directory in /var/www/group-telegram/post.php on line 50
gonzo-обзоры ML статей | Telegram Webview: gonzo_ML/62 -
Telegram Group & Telegram Channel
3. Сложные модификации Трансформера -- борьба с ограничениями.

Базовых ограничений у Трансформера несколько:
* не может быть контекста длиннее длины входа
* тяжело увеличивать длину входа (attention это квадрат от входа по сложности)
* не Turing Complete
Соответственно, последние полгода народ активно работает над снятием этих ограничений. Тут мне попались такие штуки:

3.1. Universal Transformers, Google, написан в прошлом году, попал на ICLR2019
Статья: https://arxiv.org/abs/1807.03819
Блогопост: https://ai.googleblog.com/2018/08/moving-beyond-translation-with.html
Свежий разбор: http://mostafadehghani.com/2019/05/05/universal-transformers/

Мотивация -- трасформеры не Turing Complete и у трасформеров нет Recurrent Inductive Bias, а оно, говорят, очень полезно для генерализации структуры.
Давайте сделаем реккурентную сеть поверх трансформерной ячейки.

Ячейка -- один энкодерный слой из трансформера, на каждом такте она обрабатывает все входы и выдаёт самой себе выход на следующий шаг.
При этом надо как-то понять когда остановиться -- делаем вычисляемый признак остановки -- отдельный для каждой позиции входа.
Такая конструкция называется Adaptive universal transformer (идея adaptive остновки взята из аналогичных более старых работ про RNN).
Если для какой-то позиции случалась остановка -- стейт этой позиции замораживаем и копируем дальше на входы внимания другим словам на более поздних итерациях.

Утверждается, что UT существенно более эффективен, чем обычный Трансформер на задачах, где мало входных данных.

3.2. Transformer-XL, начало 2019, Google Brain + CMU
Статья: https://arxiv.org/abs/1901.02860
Разбор: https://towardsdatascience.com/transformer-xl-explained-combining-transformers-and-rnns-into-a-state-of-the-art-language-model-c0cfe9e5a924

Боремся с проблемой фиксированной длины входа. Transformer-XL это модификация LM over vanilla Transformer, позволяющая откусить больше, чем в рот помещается. Полезная для понимания схема -- ниже.
Логика простая:
* Пусть у нас есть допустимый вход длины Х. И входное предложение длины Y>X.
* Порежем входное предложение на куски длины Х.
* Первый кусок пропустим как обычно, но будем сохранять промежуточные стейты.
* Дальше будем обрабатывать следующий кусок, плюс подавать на вход ещё и стейты с предыдущего куска (и запоминать новые).
Такая схема позволяет, сохраняя историю стейтов равную высоте стэка, имитировать длинное окно входа. Это не совсем честно, т.к. градиент на прошлый кусок уже не уйдёт, но всё равно не так плохо. Есть ещё одна загвоздка -- в оригинальном Трансформере у нас есть абсолютное позиционное кодирование. Здесь вместо него предлагается использовать относительное: при расчёте внимания со слова в позиции А на слово в позиции В считать вес внимания отдельно по совпадению Query/Key (без позиционного сигнала) + часть веса добавлять как функицю от разности (В-А). И такую конструкцию, в отличие от оригинального Трансформера, следует делать на каждом слое сети.

Показано, что такой подход даёт SOTA на задачах, где нужно держать длинный контекст.



group-telegram.com/gonzo_ML/62
Create:
Last Update:

3. Сложные модификации Трансформера -- борьба с ограничениями.

Базовых ограничений у Трансформера несколько:
* не может быть контекста длиннее длины входа
* тяжело увеличивать длину входа (attention это квадрат от входа по сложности)
* не Turing Complete
Соответственно, последние полгода народ активно работает над снятием этих ограничений. Тут мне попались такие штуки:

3.1. Universal Transformers, Google, написан в прошлом году, попал на ICLR2019
Статья: https://arxiv.org/abs/1807.03819
Блогопост: https://ai.googleblog.com/2018/08/moving-beyond-translation-with.html
Свежий разбор: http://mostafadehghani.com/2019/05/05/universal-transformers/

Мотивация -- трасформеры не Turing Complete и у трасформеров нет Recurrent Inductive Bias, а оно, говорят, очень полезно для генерализации структуры.
Давайте сделаем реккурентную сеть поверх трансформерной ячейки.

Ячейка -- один энкодерный слой из трансформера, на каждом такте она обрабатывает все входы и выдаёт самой себе выход на следующий шаг.
При этом надо как-то понять когда остановиться -- делаем вычисляемый признак остановки -- отдельный для каждой позиции входа.
Такая конструкция называется Adaptive universal transformer (идея adaptive остновки взята из аналогичных более старых работ про RNN).
Если для какой-то позиции случалась остановка -- стейт этой позиции замораживаем и копируем дальше на входы внимания другим словам на более поздних итерациях.

Утверждается, что UT существенно более эффективен, чем обычный Трансформер на задачах, где мало входных данных.

3.2. Transformer-XL, начало 2019, Google Brain + CMU
Статья: https://arxiv.org/abs/1901.02860
Разбор: https://towardsdatascience.com/transformer-xl-explained-combining-transformers-and-rnns-into-a-state-of-the-art-language-model-c0cfe9e5a924

Боремся с проблемой фиксированной длины входа. Transformer-XL это модификация LM over vanilla Transformer, позволяющая откусить больше, чем в рот помещается. Полезная для понимания схема -- ниже.
Логика простая:
* Пусть у нас есть допустимый вход длины Х. И входное предложение длины Y>X.
* Порежем входное предложение на куски длины Х.
* Первый кусок пропустим как обычно, но будем сохранять промежуточные стейты.
* Дальше будем обрабатывать следующий кусок, плюс подавать на вход ещё и стейты с предыдущего куска (и запоминать новые).
Такая схема позволяет, сохраняя историю стейтов равную высоте стэка, имитировать длинное окно входа. Это не совсем честно, т.к. градиент на прошлый кусок уже не уйдёт, но всё равно не так плохо. Есть ещё одна загвоздка -- в оригинальном Трансформере у нас есть абсолютное позиционное кодирование. Здесь вместо него предлагается использовать относительное: при расчёте внимания со слова в позиции А на слово в позиции В считать вес внимания отдельно по совпадению Query/Key (без позиционного сигнала) + часть веса добавлять как функицю от разности (В-А). И такую конструкцию, в отличие от оригинального Трансформера, следует делать на каждом слое сети.

Показано, что такой подход даёт SOTA на задачах, где нужно держать длинный контекст.

BY gonzo-обзоры ML статей


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/gonzo_ML/62

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

At its heart, Telegram is little more than a messaging app like WhatsApp or Signal. But it also offers open channels that enable a single user, or a group of users, to communicate with large numbers in a method similar to a Twitter account. This has proven to be both a blessing and a curse for Telegram and its users, since these channels can be used for both good and ill. Right now, as Wired reports, the app is a key way for Ukrainians to receive updates from the government during the invasion. Elsewhere, version 8.6 of Telegram integrates the in-app camera option into the gallery, while a new navigation bar gives quick access to photos, files, location sharing, and more. "The result is on this photo: fiery 'greetings' to the invaders," the Security Service of Ukraine wrote alongside a photo showing several military vehicles among plumes of black smoke. Right now the digital security needs of Russians and Ukrainians are very different, and they lead to very different caveats about how to mitigate the risks associated with using Telegram. For Ukrainians in Ukraine, whose physical safety is at risk because they are in a war zone, digital security is probably not their highest priority. They may value access to news and communication with their loved ones over making sure that all of their communications are encrypted in such a manner that they are indecipherable to Telegram, its employees, or governments with court orders. The original Telegram channel has expanded into a web of accounts for different locations, including specific pages made for individual Russian cities. There's also an English-language website, which states it is owned by the people who run the Telegram channels.
from nl


Telegram gonzo-обзоры ML статей
FROM American