Telegram Group & Telegram Channel
Сегодня в Стокгольме проходит церемония вручения Нобелевских премий 2024 года. Как известно, половина Нобелевской премии по химии присуждена сотрудникам компании Google DeepMind Демису Хассабису и Джону Джамперу, которые разработали исключительно эффективную компьютерную программу AlphaFold2 для предсказания пространственной структуры белков по известной последовательности аминокислотных остатков с использованием инструментов искусственного интеллекта (см. посты от 9 и 14 октября).

На волне этого несомненного успеха сотрудники компания Google DeepMind недавно опубликовали весьма содержательное эссе о перспективах использования возможностей искусственного интеллекта (ИИ) в науке:

https://deepmind.google/public-policy/ai-for-science/

Я прочитал, мне понравилось. Основные проблемы и перспективы развития описаны со знанием дела. Рекомендую ознакомиться. ТГ-канал Innovation & Research разместил русский перевод этого важного документа, который можно скачать по ссылке:

https://www.group-telegram.com/abulaphia/5321

Приведу несколько фрагментов этого эссе (не то, чтобы самых важных, просто для затравки интереса):

Несмотря на значительное расширение научного сообщества за последние полвека (только в США число научных сотрудников выросло более чем в семь раз), темпы общественного прогресса снизились. Современные ученые сталкиваются с рядом проблем, которые все чаще связаны с масштабом и сложностью, начиная с постоянно растущей библиографической базы, которую необходимо проанализировать, и заканчивая все более сложными экспериментами. Современные методы глубинного обучения очень хорошо приспособлены для решения подобных задач.

Если говорить об обнародовании результатов научных исследований, то есть ряд полезных подходов, таких как серверы препринтов и репозитории кодов, однако большинство ученых по-прежнему публикуют свои результаты в виде трудных для понимания научных статей, насыщенных профессиональным жаргоном. Это может скорее охладить, нежели разжечь интерес к работе ученых, в том числе со стороны властей, представителей бизнеса и общественности.

Методы ИИ создают потенциал для того, чтобы кардинально переосмыслить определенные научные задачи, в том числе что значит «читать» или «писать» научную статью в мире, где ученый может использовать Большую Языковую Модель для ее рецензирования, корректировки выводов с учетом аудитории или преобразования в формат интерактивной статьи или аудиогида.

Обычно при поиске оптимальной структуры молекулы, доказательства или алгоритма ученые применяют сочетание интуиции, метода проб и ошибок, итераций или вычислений методом «грубой силы». Однако эти методы не могут охватить огромное пространство возможных решений, и оптимальные варианты остаются неисследованными. ИИ способен открыть доступ к новым областям пространства поиска и в то же время быстрее находить решения, которые с наибольшей вероятностью окажутся действенными.

Системы ИИ способствуют научному пониманию не вопреки своей непрозрачности, а благодаря ей, поскольку эта непрозрачность может быть следствием их способности работать в высокоразмерных пространствах, которые могут быть непостижимы для людей, но необходимы для революционных научных открытий.

Подходы к научным исследованиям в академических кругах и промышленности, как правило, прямо противоположны. В научном сообществе царит демократия, а в промышленных лабораториях — иерархия. Недавно появилась новая волна научно-исследовательских институтов. Такие организации пытаются найти баланс между ориентацией на иерархическую координацию и расширением возможностей для инициативы ученых. Для некоторых организаций это означает сосредоточиться на одной конкретной проблеме с предварительно заданными контрольными точками, а для других — предложить ведущим исследователям более свободное финансирование.



group-telegram.com/khokhlovAR/872
Create:
Last Update:

Сегодня в Стокгольме проходит церемония вручения Нобелевских премий 2024 года. Как известно, половина Нобелевской премии по химии присуждена сотрудникам компании Google DeepMind Демису Хассабису и Джону Джамперу, которые разработали исключительно эффективную компьютерную программу AlphaFold2 для предсказания пространственной структуры белков по известной последовательности аминокислотных остатков с использованием инструментов искусственного интеллекта (см. посты от 9 и 14 октября).

На волне этого несомненного успеха сотрудники компания Google DeepMind недавно опубликовали весьма содержательное эссе о перспективах использования возможностей искусственного интеллекта (ИИ) в науке:

https://deepmind.google/public-policy/ai-for-science/

Я прочитал, мне понравилось. Основные проблемы и перспективы развития описаны со знанием дела. Рекомендую ознакомиться. ТГ-канал Innovation & Research разместил русский перевод этого важного документа, который можно скачать по ссылке:

https://www.group-telegram.com/abulaphia/5321

Приведу несколько фрагментов этого эссе (не то, чтобы самых важных, просто для затравки интереса):

Несмотря на значительное расширение научного сообщества за последние полвека (только в США число научных сотрудников выросло более чем в семь раз), темпы общественного прогресса снизились. Современные ученые сталкиваются с рядом проблем, которые все чаще связаны с масштабом и сложностью, начиная с постоянно растущей библиографической базы, которую необходимо проанализировать, и заканчивая все более сложными экспериментами. Современные методы глубинного обучения очень хорошо приспособлены для решения подобных задач.

Если говорить об обнародовании результатов научных исследований, то есть ряд полезных подходов, таких как серверы препринтов и репозитории кодов, однако большинство ученых по-прежнему публикуют свои результаты в виде трудных для понимания научных статей, насыщенных профессиональным жаргоном. Это может скорее охладить, нежели разжечь интерес к работе ученых, в том числе со стороны властей, представителей бизнеса и общественности.

Методы ИИ создают потенциал для того, чтобы кардинально переосмыслить определенные научные задачи, в том числе что значит «читать» или «писать» научную статью в мире, где ученый может использовать Большую Языковую Модель для ее рецензирования, корректировки выводов с учетом аудитории или преобразования в формат интерактивной статьи или аудиогида.

Обычно при поиске оптимальной структуры молекулы, доказательства или алгоритма ученые применяют сочетание интуиции, метода проб и ошибок, итераций или вычислений методом «грубой силы». Однако эти методы не могут охватить огромное пространство возможных решений, и оптимальные варианты остаются неисследованными. ИИ способен открыть доступ к новым областям пространства поиска и в то же время быстрее находить решения, которые с наибольшей вероятностью окажутся действенными.

Системы ИИ способствуют научному пониманию не вопреки своей непрозрачности, а благодаря ей, поскольку эта непрозрачность может быть следствием их способности работать в высокоразмерных пространствах, которые могут быть непостижимы для людей, но необходимы для революционных научных открытий.

Подходы к научным исследованиям в академических кругах и промышленности, как правило, прямо противоположны. В научном сообществе царит демократия, а в промышленных лабораториях — иерархия. Недавно появилась новая волна научно-исследовательских институтов. Такие организации пытаются найти баланс между ориентацией на иерархическую координацию и расширением возможностей для инициативы ученых. Для некоторых организаций это означает сосредоточиться на одной конкретной проблеме с предварительно заданными контрольными точками, а для других — предложить ведущим исследователям более свободное финансирование.

BY Алексей Хохлов




Share with your friend now:
group-telegram.com/khokhlovAR/872

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

"There are several million Russians who can lift their head up from propaganda and try to look for other sources, and I'd say that most look for it on Telegram," he said. At the start of 2018, the company attempted to launch an Initial Coin Offering (ICO) which would enable it to enable payments (and earn the cash that comes from doing so). The initial signals were promising, especially given Telegram’s user base is already fairly crypto-savvy. It raised an initial tranche of cash – worth more than a billion dollars – to help develop the coin before opening sales to the public. Unfortunately, third-party sales of coins bought in those initial fundraising rounds raised the ire of the SEC, which brought the hammer down on the whole operation. In 2020, officials ordered Telegram to pay a fine of $18.5 million and hand back much of the cash that it had raised. The account, "War on Fakes," was created on February 24, the same day Russian President Vladimir Putin announced a "special military operation" and troops began invading Ukraine. The page is rife with disinformation, according to The Atlantic Council's Digital Forensic Research Lab, which studies digital extremism and published a report examining the channel. Just days after Russia invaded Ukraine, Durov wrote that Telegram was "increasingly becoming a source of unverified information," and he worried about the app being used to "incite ethnic hatred." Meanwhile, a completely redesigned attachment menu appears when sending multiple photos or vides. Users can tap "X selected" (X being the number of items) at the top of the panel to preview how the album will look in the chat when it's sent, as well as rearrange or remove selected media.
from nl


Telegram Алексей Хохлов
FROM American