Notice: file_put_contents(): Write of 8089 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50

Warning: file_put_contents(): Only 8192 of 16281 bytes written, possibly out of free disk space in /var/www/group-telegram/post.php on line 50
Kali Novskaya | Telegram Webview: rybolos_channel/1309 -
Telegram Group & Telegram Channel
🌸Больше языков для LLM🌸
#nlp #про_nlp

Huggingface в поиске контрибьюторов носителей языков!
Корпус FineWeb на 15 трлн токенов теперь ждёт большое расширение на 1000+ языков 🎉

🟣Сколько языков сейчас представлены в практике моделирования языка?

Если считать, что в целом живых языков 6-7 тысяч,
— в базе Ethnologue 7164
— суммарно во всех LLM работах упоминается примерно 1500 языков (в основном за счет работ NLLB и Towards MT for next 1000 languages)
— у звучащей речи чуть лучше: 4000 языков, но у 70% из них меньше чем 2 часа записей (за счет XEUS)

🟣Бутылочное горлышко валидации
Все ресурсы, которые так или иначе языки описывают, можно расположить на 2 осях координат: их качество и их пригодность для ML-применений. Окажется, что наиболее доступные и пригодные для предобучения моделей корпуса (CommonCrawl, его вариации) в то же время оказываются и наименее качественными.

Причина тому — автоматическое определение языка (см fasttext)  невозможность ручной валидации. Автоматические быстрые классификаторы как правило могут с высоким уровнем надежности определить не более 200 языков, тогда как большинство языков оказывается в большой куче "мусора"  — наименее надежно атрибутированных данных.

Бутылочное горлышко для того, чтобы побороть валидацию на большом объеме данных — это наличие сообщества носителей языков, которые бы активно контрибьютили и помогали улучшить как классификаторы, так и способы оценки качества получаемых языковых моделей.

Я уже несколько раз рассказывала про ситуацию с многоязычными данными, и даже несколько раз за этот год меняла слайды — так быстро меняется ситуация! И сегодня даже в лучшую сторону.

🟣Инициатива HuggingFace

Помимо расширения корпуса FineWeb, HuggingFace ищет волонтеров и носителей языка, чтобы расширить именно процедуру многоязычной оценки языковых моделей.
Новая инициатива — FineTasks — объединяет 4 стандартных бенчмарк-формата:

— Машинное чтение: Понимание предоставленного контекста и ответы на вопросы на его основе.
— Общие знания: Ответы на вопросы о фактах из различных областей без дополнительного контекста.
— Понимание естественного языка (NLU): Понимание семантики предоставленного ввода.
— Рассуждения на основе здравого смысла: Демонстрация способности выполнять простые рассуждения, требующие воплощенных знаний.
— Генеративные задачи: Умение генерировать корректный текст на целевом языке.

Авторы уже собрали 185 задач для 9 языков: поддерживаются
китайский, французский, арабский, русский, тайский, хинди, турецкий, суахили и телугу.


Цель для полного бенчмарка — как минимум 50 языков из разных семей, ареалов и с разной письменностью.

Ну и... ждём большой новый многоязычный корпус с открытой лицензией!

Куда контрибьютить?
🟣 Контрибьютить новые задания и языки можно здесь в шаблоне
🟣Мини-гайд
🟣Блог HF
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/rybolos_channel/1309
Create:
Last Update:

🌸Больше языков для LLM🌸
#nlp #про_nlp

Huggingface в поиске контрибьюторов носителей языков!
Корпус FineWeb на 15 трлн токенов теперь ждёт большое расширение на 1000+ языков 🎉

🟣Сколько языков сейчас представлены в практике моделирования языка?

Если считать, что в целом живых языков 6-7 тысяч,
— в базе Ethnologue 7164
— суммарно во всех LLM работах упоминается примерно 1500 языков (в основном за счет работ NLLB и Towards MT for next 1000 languages)
— у звучащей речи чуть лучше: 4000 языков, но у 70% из них меньше чем 2 часа записей (за счет XEUS)

🟣Бутылочное горлышко валидации
Все ресурсы, которые так или иначе языки описывают, можно расположить на 2 осях координат: их качество и их пригодность для ML-применений. Окажется, что наиболее доступные и пригодные для предобучения моделей корпуса (CommonCrawl, его вариации) в то же время оказываются и наименее качественными.

Причина тому — автоматическое определение языка (см fasttext)  невозможность ручной валидации. Автоматические быстрые классификаторы как правило могут с высоким уровнем надежности определить не более 200 языков, тогда как большинство языков оказывается в большой куче "мусора"  — наименее надежно атрибутированных данных.

Бутылочное горлышко для того, чтобы побороть валидацию на большом объеме данных — это наличие сообщества носителей языков, которые бы активно контрибьютили и помогали улучшить как классификаторы, так и способы оценки качества получаемых языковых моделей.

Я уже несколько раз рассказывала про ситуацию с многоязычными данными, и даже несколько раз за этот год меняла слайды — так быстро меняется ситуация! И сегодня даже в лучшую сторону.

🟣Инициатива HuggingFace

Помимо расширения корпуса FineWeb, HuggingFace ищет волонтеров и носителей языка, чтобы расширить именно процедуру многоязычной оценки языковых моделей.
Новая инициатива — FineTasks — объединяет 4 стандартных бенчмарк-формата:

— Машинное чтение: Понимание предоставленного контекста и ответы на вопросы на его основе.
— Общие знания: Ответы на вопросы о фактах из различных областей без дополнительного контекста.
— Понимание естественного языка (NLU): Понимание семантики предоставленного ввода.
— Рассуждения на основе здравого смысла: Демонстрация способности выполнять простые рассуждения, требующие воплощенных знаний.
— Генеративные задачи: Умение генерировать корректный текст на целевом языке.

Авторы уже собрали 185 задач для 9 языков: поддерживаются
китайский, французский, арабский, русский, тайский, хинди, турецкий, суахили и телугу.


Цель для полного бенчмарка — как минимум 50 языков из разных семей, ареалов и с разной письменностью.

Ну и... ждём большой новый многоязычный корпус с открытой лицензией!

Куда контрибьютить?
🟣 Контрибьютить новые задания и языки можно здесь в шаблоне
🟣Мини-гайд
🟣Блог HF

BY Kali Novskaya




Share with your friend now:
group-telegram.com/rybolos_channel/1309

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The picture was mixed overseas. Hong Kong’s Hang Seng Index fell 1.6%, under pressure from U.S. regulatory scrutiny on New York-listed Chinese companies. Stocks were more buoyant in Europe, where Frankfurt’s DAX surged 1.4%. Apparently upbeat developments in Russia's discussions with Ukraine helped at least temporarily send investors back into risk assets. Russian President Vladimir Putin said during a meeting with his Belarusian counterpart Alexander Lukashenko that there were "certain positive developments" occurring in the talks with Ukraine, according to a transcript of their meeting. Putin added that discussions were happening "almost on a daily basis." Elsewhere, version 8.6 of Telegram integrates the in-app camera option into the gallery, while a new navigation bar gives quick access to photos, files, location sharing, and more. In addition, Telegram's architecture limits the ability to slow the spread of false information: the lack of a central public feed, and the fact that comments are easily disabled in channels, reduce the space for public pushback. Stocks dropped on Friday afternoon, as gains made earlier in the day on hopes for diplomatic progress between Russia and Ukraine turned to losses. Technology stocks were hit particularly hard by higher bond yields.
from nl


Telegram Kali Novskaya
FROM American