Telegram Group & Telegram Channel
Вчера вышла интересная статья от ребят из Salesforce. Когда-то для меня было удивлением, что у них вообще есть отдел исследований искусственного интеллекта, ведь их основной бизнес - это SaaS CRM-система (по простому, система управления взаимоотношениями с клиентами по модели предоставления готового ПО). У них даже тикер на бирже CRM, хех 🤔

Так вот, они то и дело выпускают неплохие работы по Large Language Models и мультимодальным моделям, причём субъективно у меня складывается ощущение, что многое делается с задачей уменьшения требуемых ресурсов. То есть не полгода тренировать нейронку на кластере GPU, а нечто более приземленное.

Мультимодальные модели - это модели, работающие с несколькими типами данных, или модальностями. Картинки, текст, звук, видео - это разные модальности, и приемы-архитектуры нейронок должны быть адаптированы для них. Один из самых простых примеров мультимодальности - это ответ на вопрос по картинке: в каком городе находится достопримечательность (и картинка) ? что надето на человеке справа? И так далее.

Основная проблема в том, что нужно связывать два разных сигнала, от изображения и текста. Подходы давно существуют, работают неплохо, но зачастую требуют длительного обучения большиииииих моделек, чтобы "выровнять" их, или связать - то есть чтобы текстовая модель понимала сигнал от картиночной и наоборот.

Господа из Salesforce предложили переиспользовать существующие модели, замораживая их веса во время обучения (то есть не считая по ним градиенты и не изменяя), а между ними обучать маленькую сетку, которая формирует запросы (в прямом и переносном смысле) от одной модели к другой (на прикрепленном изображении это Q-former). Получается, что обучать нужно совсем мало - а метрики выходят лучше, чем у текущего State-of-the-Art подхода.
Подход просто гениален в своей простоте и изящности)

💨 Статья тут, веса и код здесь, коллаб имеется - можно зайти поиграться со своими картинками.
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/seeallochnaya/41
Create:
Last Update:

Вчера вышла интересная статья от ребят из Salesforce. Когда-то для меня было удивлением, что у них вообще есть отдел исследований искусственного интеллекта, ведь их основной бизнес - это SaaS CRM-система (по простому, система управления взаимоотношениями с клиентами по модели предоставления готового ПО). У них даже тикер на бирже CRM, хех 🤔

Так вот, они то и дело выпускают неплохие работы по Large Language Models и мультимодальным моделям, причём субъективно у меня складывается ощущение, что многое делается с задачей уменьшения требуемых ресурсов. То есть не полгода тренировать нейронку на кластере GPU, а нечто более приземленное.

Мультимодальные модели - это модели, работающие с несколькими типами данных, или модальностями. Картинки, текст, звук, видео - это разные модальности, и приемы-архитектуры нейронок должны быть адаптированы для них. Один из самых простых примеров мультимодальности - это ответ на вопрос по картинке: в каком городе находится достопримечательность (и картинка) ? что надето на человеке справа? И так далее.

Основная проблема в том, что нужно связывать два разных сигнала, от изображения и текста. Подходы давно существуют, работают неплохо, но зачастую требуют длительного обучения большиииииих моделек, чтобы "выровнять" их, или связать - то есть чтобы текстовая модель понимала сигнал от картиночной и наоборот.

Господа из Salesforce предложили переиспользовать существующие модели, замораживая их веса во время обучения (то есть не считая по ним градиенты и не изменяя), а между ними обучать маленькую сетку, которая формирует запросы (в прямом и переносном смысле) от одной модели к другой (на прикрепленном изображении это Q-former). Получается, что обучать нужно совсем мало - а метрики выходят лучше, чем у текущего State-of-the-Art подхода.
Подход просто гениален в своей простоте и изящности)

💨 Статья тут, веса и код здесь, коллаб имеется - можно зайти поиграться со своими картинками.

BY Сиолошная




Share with your friend now:
group-telegram.com/seeallochnaya/41

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

But Telegram says people want to keep their chat history when they get a new phone, and they like having a data backup that will sync their chats across multiple devices. And that is why they let people choose whether they want their messages to be encrypted or not. When not turned on, though, chats are stored on Telegram's services, which are scattered throughout the world. But it has "disclosed 0 bytes of user data to third parties, including governments," Telegram states on its website. And indeed, volatility has been a hallmark of the market environment so far in 2022, with the S&P 500 still down more than 10% for the year-to-date after first sliding into a correction last month. The CBOE Volatility Index, or VIX, has held at a lofty level of more than 30. "This time we received the coordinates of enemy vehicles marked 'V' in Kyiv region," it added. During the operations, Sebi officials seized various records and documents, including 34 mobile phones, six laptops, four desktops, four tablets, two hard drive disks and one pen drive from the custody of these persons. In a message on his Telegram channel recently recounting the episode, Durov wrote: "I lost my company and my home, but would do it again – without hesitation."
from nl


Telegram Сиолошная
FROM American