Telegram Group & Telegram Channel
Trust or Escalate: LLM Judges with Provable Guarantees for Human Agreement
Статья: https://arxiv.org/abs/2407.18370
Рецензии: https://openreview.net/forum?id=UHPnqSTBPO

Попарные оценки языковыми моделями с теоретическими гарантиями согласованности с людьми 😐

Что за теоретические гарантии? Предположим, что мы задаём уровень риска α и хотим, чтобы для примера x вероятность согласованности языковой модели с людьми на этом примере была больше 1 - α, при условии, что этот мы вообще оцениваем этот пример. Последняя фраза тут очень важна — очевидно, что есть примеры, на которых даже у людей очень низкая согласованность, и такие примеры мы хотим каким-то образом определять и не учитывать их в оценке. Теперь для каждого метода оценки у нас есть 2 чиселки: непосредственно согласованность с людьми, а ещё и покрытие, то есть доля примеров, которые мы не откинули в процессе оценки.

🔹Few-shot ансамблирование
Для начала нам нужно понять, а как вообще отсеивать примеры, которые мы не хотим оценивать? Для этого мы можем попросить модель каким-то образом вывести уверенность в своей оценке. Исходя из этой уверенности и маленького калибровочного набора данных, можно вывести минимальную уверенность для заданного α, ниже которой мы должны откидывать примеры.

Есть разные методы оценки уверенности модели, например можно взять прямую вероятность генерации ответа, или можно попросить модель явно выдавать уверенность текстом. Авторы считают точность, ROC AUC и другие метрики классификации для этих вариантов и показывают, что они жёстко переоценивают уверенность модели. Поэтому предлагается ансамблировать несколько few-shot ответов модели с разными наборами примеров в контексте. Авторы показывают, что такая уверенность лучше откалибрована, а значит позволяет отсеивать меньше примеров.

🔹Каскады
Второй шаг ещё интереснее: дело в том, что слабые модели тоже неплохо откалиброваны. А значит можно сначала прогнать примеры через дешёвые модели с высокой границей уверенности. Если они прошли фильтр — шикарно, используем дешёвую модель для оценки. Если нет — переходим к более дорогой модели. Полностью откидываем пример только тогда, когда все модели не уверены.

🔹Эмпирические оценки
А дальше оказывается, что это всё очень хорошо бьётся с эмпирической согласованностью. То есть теоретическая оценка согласованности действительно является оценкой снизу на практике. Кроме того, авторы показывают, что выкинутые примеры дейсвительно были бы выкинуты по несогласованности людей.

Итого мы получаем:
1) чёткую схему оценки
2) с теоретическими гарантиями согласованности
3) с эмпирической согласованностью выше, чем у GPT-4 💪
3) с инференсом в 2-5 раз дешевле, чем у GPT-4 😺

P.S. Гитхаб пустой, но весь код можно найти в доп. материалах на OpenReview 😁
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/senior_augur/338
Create:
Last Update:

Trust or Escalate: LLM Judges with Provable Guarantees for Human Agreement
Статья: https://arxiv.org/abs/2407.18370
Рецензии: https://openreview.net/forum?id=UHPnqSTBPO

Попарные оценки языковыми моделями с теоретическими гарантиями согласованности с людьми 😐

Что за теоретические гарантии? Предположим, что мы задаём уровень риска α и хотим, чтобы для примера x вероятность согласованности языковой модели с людьми на этом примере была больше 1 - α, при условии, что этот мы вообще оцениваем этот пример. Последняя фраза тут очень важна — очевидно, что есть примеры, на которых даже у людей очень низкая согласованность, и такие примеры мы хотим каким-то образом определять и не учитывать их в оценке. Теперь для каждого метода оценки у нас есть 2 чиселки: непосредственно согласованность с людьми, а ещё и покрытие, то есть доля примеров, которые мы не откинули в процессе оценки.

🔹Few-shot ансамблирование
Для начала нам нужно понять, а как вообще отсеивать примеры, которые мы не хотим оценивать? Для этого мы можем попросить модель каким-то образом вывести уверенность в своей оценке. Исходя из этой уверенности и маленького калибровочного набора данных, можно вывести минимальную уверенность для заданного α, ниже которой мы должны откидывать примеры.

Есть разные методы оценки уверенности модели, например можно взять прямую вероятность генерации ответа, или можно попросить модель явно выдавать уверенность текстом. Авторы считают точность, ROC AUC и другие метрики классификации для этих вариантов и показывают, что они жёстко переоценивают уверенность модели. Поэтому предлагается ансамблировать несколько few-shot ответов модели с разными наборами примеров в контексте. Авторы показывают, что такая уверенность лучше откалибрована, а значит позволяет отсеивать меньше примеров.

🔹Каскады
Второй шаг ещё интереснее: дело в том, что слабые модели тоже неплохо откалиброваны. А значит можно сначала прогнать примеры через дешёвые модели с высокой границей уверенности. Если они прошли фильтр — шикарно, используем дешёвую модель для оценки. Если нет — переходим к более дорогой модели. Полностью откидываем пример только тогда, когда все модели не уверены.

🔹Эмпирические оценки
А дальше оказывается, что это всё очень хорошо бьётся с эмпирической согласованностью. То есть теоретическая оценка согласованности действительно является оценкой снизу на практике. Кроме того, авторы показывают, что выкинутые примеры дейсвительно были бы выкинуты по несогласованности людей.

Итого мы получаем:
1) чёткую схему оценки
2) с теоретическими гарантиями согласованности
3) с эмпирической согласованностью выше, чем у GPT-4 💪
3) с инференсом в 2-5 раз дешевле, чем у GPT-4 😺

P.S. Гитхаб пустой, но весь код можно найти в доп. материалах на OpenReview 😁

BY Старший Авгур




Share with your friend now:
group-telegram.com/senior_augur/338

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Under the Sebi Act, the regulator has the power to carry out search and seizure of books, registers, documents including electronics and digital devices from any person associated with the securities market. "Like the bombing of the maternity ward in Mariupol," he said, "Even before it hits the news, you see the videos on the Telegram channels." But because group chats and the channel features are not end-to-end encrypted, Galperin said user privacy is potentially under threat. The company maintains that it cannot act against individual or group chats, which are “private amongst their participants,” but it will respond to requests in relation to sticker sets, channels and bots which are publicly available. During the invasion of Ukraine, Pavel Durov has wrestled with this issue a lot more prominently than he has before. Channels like Donbass Insider and Bellum Acta, as reported by Foreign Policy, started pumping out pro-Russian propaganda as the invasion began. So much so that the Ukrainian National Security and Defense Council issued a statement labeling which accounts are Russian-backed. Ukrainian officials, in potential violation of the Geneva Convention, have shared imagery of dead and captured Russian soldiers on the platform. Overall, extreme levels of fear in the market seems to have morphed into something more resembling concern. For example, the Cboe Volatility Index fell from its 2022 peak of 36, which it hit Monday, to around 30 on Friday, a sign of easing tensions. Meanwhile, while the price of WTI crude oil slipped from Sunday’s multiyear high $130 of barrel to $109 a pop. Markets have been expecting heavy restrictions on Russian oil, some of which the U.S. has already imposed, and that would reduce the global supply and bring about even more burdensome inflation.
from nl


Telegram Старший Авгур
FROM American