Telegram Group & Telegram Channel
сладко стянул
над любым кольцом оказывается верно! у Лемэра записано над полем, наверно и доказательство обобщается, но проще передоказать. Например, пункт (1): индукция по размерности. Пусть в размерностях <n доказали, что сюръективен. Возьмём элемент b∈B степени n. Он…
Как настроиться на праздник? Вспомнить, что конечнопорожденные модули над областями главных идеалов* устроены как никогда приятно:

Теорема: пусть k — ОГИ, M — к.п. k-модуль. Тогда M раскладывается в прямую сумму циклических модулей:
M = k/(d_1)k/(d_2)..k/(d_n),
d_1,..,d_n k,
причём:
1) d_i делит d_{i+1} для каждого i;
2) все d_i необратимы.
Более того: если взять два таких разложения, то в них
3) число n одно и то же;
4) соответствующие d_i пропорциональны (отличаются на обратимый элемент).

Среди элементов d_i первые s ненулевые, а последние n-s штук равны нулю (возможно, s=0 или s=n). То есть у нас n-s свободных прямых слагаемых и s слагаемых "кручения". Из теоремы следует, что числа s и n определены однозначно. Мне сегодня хочется обозначить
n = gen(M), s = rel(M).
Другая точка зрения: есть короткая точная последовательность k-модулей
k^rel(M) -> k^gen(M) -> M -> 0,
которую "нельзя уменьшить".
[действительно: если
k^s' -f-> k^n' -> M -> 0,
то можно привести f к нормальной форме Смита. Это задаст изоморфизм как в теореме выше; только, возможно, добавятся тривиальные прямые слагаемые вида k/(1). Получим s'=rel(M)+p, n'=gen(M)+q для каких-то p≥q≥0.]

Вопрос. Пусть k — коммутативное кольцо с единицей. Зафиксируем k-модуль M. Рассмотрим все пары (n,s) такие, что существует короткая точная последовательность
k^s -> k^n -> M -> 0.
Как мы убедились выше, для ОГИ получается "треугольник"
{(gen(M)+p, rel(M)+q): q≥p≥0}.
А насколько всё сложно для произвольного k? Например:
(а) Правда ли, что если n1≥n2, то s1≥s2?
(б) Правда ли, что n и s минимизируются одновременно?

*Пусть k — коммутативное кольцо с единицей.
k — кольцо главных идеалов, если любой идеал главный.
k — область целостности, если нет делителей нуля.
k — область главных идеалов, если это одновременно кольцо главных идеалов и область целостности



group-telegram.com/sweet_homotopy/1935
Create:
Last Update:

Как настроиться на праздник? Вспомнить, что конечнопорожденные модули над областями главных идеалов* устроены как никогда приятно:

Теорема: пусть k — ОГИ, M — к.п. k-модуль. Тогда M раскладывается в прямую сумму циклических модулей:
M = k/(d_1)k/(d_2)..k/(d_n),
d_1,..,d_n k,
причём:
1) d_i делит d_{i+1} для каждого i;
2) все d_i необратимы.
Более того: если взять два таких разложения, то в них
3) число n одно и то же;
4) соответствующие d_i пропорциональны (отличаются на обратимый элемент).

Среди элементов d_i первые s ненулевые, а последние n-s штук равны нулю (возможно, s=0 или s=n). То есть у нас n-s свободных прямых слагаемых и s слагаемых "кручения". Из теоремы следует, что числа s и n определены однозначно. Мне сегодня хочется обозначить
n = gen(M), s = rel(M).
Другая точка зрения: есть короткая точная последовательность k-модулей
k^rel(M) -> k^gen(M) -> M -> 0,
которую "нельзя уменьшить".
[действительно: если
k^s' -f-> k^n' -> M -> 0,
то можно привести f к нормальной форме Смита. Это задаст изоморфизм как в теореме выше; только, возможно, добавятся тривиальные прямые слагаемые вида k/(1). Получим s'=rel(M)+p, n'=gen(M)+q для каких-то p≥q≥0.]

Вопрос. Пусть k — коммутативное кольцо с единицей. Зафиксируем k-модуль M. Рассмотрим все пары (n,s) такие, что существует короткая точная последовательность
k^s -> k^n -> M -> 0.
Как мы убедились выше, для ОГИ получается "треугольник"
{(gen(M)+p, rel(M)+q): q≥p≥0}.
А насколько всё сложно для произвольного k? Например:
(а) Правда ли, что если n1≥n2, то s1≥s2?
(б) Правда ли, что n и s минимизируются одновременно?

*Пусть k — коммутативное кольцо с единицей.
k — кольцо главных идеалов, если любой идеал главный.
k — область целостности, если нет делителей нуля.
k — область главных идеалов, если это одновременно кольцо главных идеалов и область целостности

BY сладко стянул




Share with your friend now:
group-telegram.com/sweet_homotopy/1935

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The company maintains that it cannot act against individual or group chats, which are “private amongst their participants,” but it will respond to requests in relation to sticker sets, channels and bots which are publicly available. During the invasion of Ukraine, Pavel Durov has wrestled with this issue a lot more prominently than he has before. Channels like Donbass Insider and Bellum Acta, as reported by Foreign Policy, started pumping out pro-Russian propaganda as the invasion began. So much so that the Ukrainian National Security and Defense Council issued a statement labeling which accounts are Russian-backed. Ukrainian officials, in potential violation of the Geneva Convention, have shared imagery of dead and captured Russian soldiers on the platform. Telegram Messenger Blocks Navalny Bot During Russian Election And indeed, volatility has been a hallmark of the market environment so far in 2022, with the S&P 500 still down more than 10% for the year-to-date after first sliding into a correction last month. The CBOE Volatility Index, or VIX, has held at a lofty level of more than 30. Continuing its crackdown against entities allegedly involved in a front-running scam using messaging app Telegram, Sebi on Thursday carried out search and seizure operations at the premises of eight entities in multiple locations across the country. Under the Sebi Act, the regulator has the power to carry out search and seizure of books, registers, documents including electronics and digital devices from any person associated with the securities market.
from nl


Telegram сладко стянул
FROM American