Telegram Group & Telegram Channel
Мои ноги обогнут за серпантином серпантин

Эти классы пространств забавно взаимодействуют, помимо очевидных включений P- ⊆ P ⊆ P+.

Во-первых, из расслоений Хопфа выводится, что
ΩS^3 ~ ΩS^2 x S^1,
ΩS^7 ~ ΩS^4 x S^3,
ΩS^15 ~ ΩS^8x S^7,
поэтому P- можно определить как "пространства из P, в которых петель на S^2, S^4 и S^8 не меньше, чем копий S^1, S^3, S^7".

Ещё есть вот такая симметрия/сопряжённость:
Утв. 1. Если X ∈ W, то ΩX ∈ P-.
Утв. 2. Если Y ∈ P+, то ΣY ∈ W.
Утв. 3. W замкнуто относительно ретрактов.
(То есть: если X ∈ W и существуют отображения A -i-> X -r-> A, такие что ri: A->A гомотопно тождественному, то A ∈ W)
Утв. 4. P замкнуто относительно ретрактов.

И вот ещё забавные факты:
Утв. 5. Если ΩZ ∈ P+, то ΩZ ∈ P.
Утв. 6. Если ΩΣX ∈ P+, то ΣX∈ W и поэтому ΩΣX ∈ P-.

Зачем это нужно? Иногда кучей рассуждений схожего характера удаётся доказать, что для некоторого Z верно ΩZ ∈ P. Это приятно, но копии S^1, S^3, S^7 мешаются под ногами. Но если заодно мы знаем, что ΩZ — это произведение пространств вида ΩΣX, то из Утв.4 и 6 следует, что "лишних копий нет" — их можно засунуть по Хопфу в петли на сферах, и в итоге ΩZ ∈ P-.



group-telegram.com/sweet_homotopy/2033
Create:
Last Update:

Мои ноги обогнут за серпантином серпантин

Эти классы пространств забавно взаимодействуют, помимо очевидных включений P- ⊆ P ⊆ P+.

Во-первых, из расслоений Хопфа выводится, что
ΩS^3 ~ ΩS^2 x S^1,
ΩS^7 ~ ΩS^4 x S^3,
ΩS^15 ~ ΩS^8x S^7,
поэтому P- можно определить как "пространства из P, в которых петель на S^2, S^4 и S^8 не меньше, чем копий S^1, S^3, S^7".

Ещё есть вот такая симметрия/сопряжённость:
Утв. 1. Если X ∈ W, то ΩX ∈ P-.
Утв. 2. Если Y ∈ P+, то ΣY ∈ W.
Утв. 3. W замкнуто относительно ретрактов.
(То есть: если X ∈ W и существуют отображения A -i-> X -r-> A, такие что ri: A->A гомотопно тождественному, то A ∈ W)
Утв. 4. P замкнуто относительно ретрактов.

И вот ещё забавные факты:
Утв. 5. Если ΩZ ∈ P+, то ΩZ ∈ P.
Утв. 6. Если ΩΣX ∈ P+, то ΣX∈ W и поэтому ΩΣX ∈ P-.

Зачем это нужно? Иногда кучей рассуждений схожего характера удаётся доказать, что для некоторого Z верно ΩZ ∈ P. Это приятно, но копии S^1, S^3, S^7 мешаются под ногами. Но если заодно мы знаем, что ΩZ — это произведение пространств вида ΩΣX, то из Утв.4 и 6 следует, что "лишних копий нет" — их можно засунуть по Хопфу в петли на сферах, и в итоге ΩZ ∈ P-.

BY сладко стянул


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/sweet_homotopy/2033

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Update March 8, 2022: EFF has clarified that Channels and Groups are not fully encrypted, end-to-end, updated our post to link to Telegram’s FAQ for Cloud and Secret chats, updated to clarify that auto-delete is available for group and channel admins, and added some additional links. Russians and Ukrainians are both prolific users of Telegram. They rely on the app for channels that act as newsfeeds, group chats (both public and private), and one-to-one communication. Since the Russian invasion of Ukraine, Telegram has remained an important lifeline for both Russians and Ukrainians, as a way of staying aware of the latest news and keeping in touch with loved ones. For example, WhatsApp restricted the number of times a user could forward something, and developed automated systems that detect and flag objectionable content. "Russians are really disconnected from the reality of what happening to their country," Andrey said. "So Telegram has become essential for understanding what's going on to the Russian-speaking world." If you initiate a Secret Chat, however, then these communications are end-to-end encrypted and are tied to the device you are using. That means it’s less convenient to access them across multiple platforms, but you are at far less risk of snooping. Back in the day, Secret Chats received some praise from the EFF, but the fact that its standard system isn’t as secure earned it some criticism. If you’re looking for something that is considered more reliable by privacy advocates, then Signal is the EFF’s preferred platform, although that too is not without some caveats.
from nl


Telegram сладко стянул
FROM American