Notice: file_put_contents(): Write of 1045 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50

Warning: file_put_contents(): Only 12288 of 13333 bytes written, possibly out of free disk space in /var/www/group-telegram/post.php on line 50
Малоизвестное интересное | Telegram Webview: theworldisnoteasy/1610 -
Telegram Group & Telegram Channel
​​Отставание России от США в области ИИ уже колоссально.
А через несколько лет оно увеличится до трёх километров.

Так уж получилось, что прогресс в области ИИ во многом определяется наличием огромных вычислительных мощностей, требуемых для обучения гигантских нейросетей-трансформеров.
Грег Брокман (соучредитель и СТО OpenAI) формулирует это так:
«Мы думаем, что наибольшую выгоду получит тот, у кого самый большой компьютер».
Я уже демонстрировал, насколько критично наличие мощного компьютинга для обучения Больших моделей в посте «Есть «железо» - участвуй в гонке. Нет «железа» - кури в сторонке».

Место России на карте мира по вычислительной мощности суперкомпьютеров более чем скромное. В списке ТОР500 суперкомпьютеров на этот год у США 149 систем, а у России 7. При этом, только одна из систем США по своей производительности превышает производительность всех российских систем (см. мой пост). Председатель оргкомитета суперкомпьютерного форума России, д.ф.м.н, член-корр. РАН Сергей Абрамов оценивает отставание России от США в области суперкомпьютинга примерно в 10 лет.

Но в области обучения больших моделей для ИИ-приложений ситуация еще хуже. Здесь мало вычислительной мощности обычных серверов и требуются специальные ускорители вычислений. Спецы по машинному обучению из Яндекса это комментируют так.
«Например, если обучать модель с нуля на обычном сервере, на это потребуется 40 лет, а если на одном GPU-ускорителе V100 — 10 лет. Но хорошая новость в том, что задача обучения легко параллелится, и если задействовать хотя бы 256 тех же самых V100, соединить их быстрым интерконнектом, то задачу можно решить всего за две недели.»

Поэтому, показатель числа GPU-ускорителей в вычислительных кластерах разных стран (общедоступных, частных и национальных) позволяет оценивать темпы развития систем ИИ в этих странах. Актуальная статистика данного показателя ведется в State of AI Report Compute Index. Состояние на 20 ноября приведено на приложенном рисунке, куда я добавил данные по пяти крупнейшим HPC-кластерам России (разбивка по public/private – моя оценка).

Из рисунка видно, что обучение больших моделей, занимающее на HPC-кластере всем известной американской компании дни и недели, будет требовать на HPC-кластере Яндекса месяцев, а то и лет.

Но это еще не вся беда. Введенные экспортные ограничения на поставку GPU-ускорителей в Россию и Китай за несколько лет многократно увеличат отрыв США в области обучения больших моделей для ИИ-приложений.
И этот отрыв будет измеряться уже не годами и даже не десятилетиями, а километрами, - как в старом советском анекдоте.
«Построили у нас самый мощный в мире компьютер и задали ему задачу, когда же наступит коммунизм. Компьютер думал, думал и выдал ответ: "Через 3 километра". На требование расшифровать столь странный ответ компьютер выдал:
— Каждая пятилетка — шаг к коммунизму.»

#ИИ #HPC #Россия #ЭкспортныйКонтроль



group-telegram.com/theworldisnoteasy/1610
Create:
Last Update:

​​Отставание России от США в области ИИ уже колоссально.
А через несколько лет оно увеличится до трёх километров.

Так уж получилось, что прогресс в области ИИ во многом определяется наличием огромных вычислительных мощностей, требуемых для обучения гигантских нейросетей-трансформеров.
Грег Брокман (соучредитель и СТО OpenAI) формулирует это так:
«Мы думаем, что наибольшую выгоду получит тот, у кого самый большой компьютер».
Я уже демонстрировал, насколько критично наличие мощного компьютинга для обучения Больших моделей в посте «Есть «железо» - участвуй в гонке. Нет «железа» - кури в сторонке».

Место России на карте мира по вычислительной мощности суперкомпьютеров более чем скромное. В списке ТОР500 суперкомпьютеров на этот год у США 149 систем, а у России 7. При этом, только одна из систем США по своей производительности превышает производительность всех российских систем (см. мой пост). Председатель оргкомитета суперкомпьютерного форума России, д.ф.м.н, член-корр. РАН Сергей Абрамов оценивает отставание России от США в области суперкомпьютинга примерно в 10 лет.

Но в области обучения больших моделей для ИИ-приложений ситуация еще хуже. Здесь мало вычислительной мощности обычных серверов и требуются специальные ускорители вычислений. Спецы по машинному обучению из Яндекса это комментируют так.
«Например, если обучать модель с нуля на обычном сервере, на это потребуется 40 лет, а если на одном GPU-ускорителе V100 — 10 лет. Но хорошая новость в том, что задача обучения легко параллелится, и если задействовать хотя бы 256 тех же самых V100, соединить их быстрым интерконнектом, то задачу можно решить всего за две недели.»

Поэтому, показатель числа GPU-ускорителей в вычислительных кластерах разных стран (общедоступных, частных и национальных) позволяет оценивать темпы развития систем ИИ в этих странах. Актуальная статистика данного показателя ведется в State of AI Report Compute Index. Состояние на 20 ноября приведено на приложенном рисунке, куда я добавил данные по пяти крупнейшим HPC-кластерам России (разбивка по public/private – моя оценка).

Из рисунка видно, что обучение больших моделей, занимающее на HPC-кластере всем известной американской компании дни и недели, будет требовать на HPC-кластере Яндекса месяцев, а то и лет.

Но это еще не вся беда. Введенные экспортные ограничения на поставку GPU-ускорителей в Россию и Китай за несколько лет многократно увеличат отрыв США в области обучения больших моделей для ИИ-приложений.
И этот отрыв будет измеряться уже не годами и даже не десятилетиями, а километрами, - как в старом советском анекдоте.
«Построили у нас самый мощный в мире компьютер и задали ему задачу, когда же наступит коммунизм. Компьютер думал, думал и выдал ответ: "Через 3 километра". На требование расшифровать столь странный ответ компьютер выдал:
— Каждая пятилетка — шаг к коммунизму.»

#ИИ #HPC #Россия #ЭкспортныйКонтроль

BY Малоизвестное интересное




Share with your friend now:
group-telegram.com/theworldisnoteasy/1610

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

'Wild West' Messages are not fully encrypted by default. That means the company could, in theory, access the content of the messages, or be forced to hand over the data at the request of a government. For tech stocks, “the main thing is yields,” Essaye said. Oh no. There’s a certain degree of myth-making around what exactly went on, so take everything that follows lightly. Telegram was originally launched as a side project by the Durov brothers, with Nikolai handling the coding and Pavel as CEO, while both were at VK. The perpetrators use various names to carry out the investment scams. They may also impersonate or clone licensed capital market intermediaries by using the names, logos, credentials, websites and other details of the legitimate entities to promote the illegal schemes.
from nl


Telegram Малоизвестное интересное
FROM American