Notice: file_put_contents(): Write of 4179 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50

Warning: file_put_contents(): Only 8192 of 12371 bytes written, possibly out of free disk space in /var/www/group-telegram/post.php on line 50
провода+болота | Telegram Webview: wiresandswamps/744 -
Telegram Group & Telegram Channel
побывала на конференции Ассоциации «История и компьютер» по приглашению Андрея Володина.

разговор на конференции был так хорош, что я опишу здесь основные для себя тезисы.
дискуссия, в которой я участвовала, значит, была посвящена ИИ в иторической науке. вопросы классические: как быть историками с ИИ.

у меня, как у междисциплинарной исследовательницы, к историкам есть конкретные вопросы или даже запросы. как и к любой науке.

1. модели ИИ сейчас — лингвистические. это значит, что они построены на подходах из науки лингвистики. там довольно специфичное понимание текста, его значения и контекста. такие подходы — не всем подходят, простите за каламбур.
важно, чтобы учёные из других дисциплин разрабатывали свои модели, и была возможность работать не только с лингвистическими теориями, лежащими в основе методов ИИ.

2. в частности, в лингвистических моделях отсутствует историческое понимание данных и алгоритмов. это большая проблема для ИИ: там нет истории, если специально не запрашивать.
нужно, чтобы исторические науки создавали свои, иначе структурированные наборы данных. и выдачу их формировали в своих, иначе структурированных интерфейсах. иначе будет каша мала из топора.

3. для data science нет разницы между данными, информацией, фактами, источниками и знанием. эти понятия для них — плоские и как бы на одном листе.
у историков, как и у любой науки, эти понятия отличаются. работа с архивами и другими инфраструктурами, дающими источники — должна включать сложный отбор и иерархию материалов, из которых берутся данные. а понятие информации — вообще лишнее.

4. фейки и кейсы. эти слова — очень сильно путают.
4.1.
есть исследования, построенные на отдельных случаях (кейсах).
исследования эти потом становятся частью канона, теории строятся на них. потом случаев становится больше, часть догм и канонов пересматривается.
наука должна постоянно отслеживать эти изменения, и уточнять теории и методы, исходя из новых случаев.
если внезапно отрубить у институтов знания связующее звено в треугольнике теория-метод-предмет, у нас выйдет чудище в духе Франкенштейна. так нельзя.

4.2.
слово «фейк» — это лажа. нет фейков.
есть ошибки, недоработки, фальшивки, сфабрикованные артефакты и пр.
зачастую «фейк» — это просто неосмысленный случай. иногда «фейком» оказывается кусок данных, лишённый интерпретации. иногда — наоборот, интерпретация, построенная на устаревшем понимании истины в науке.
короче, говорить «фейк» учёным не стоит. нужно разбираться.

5. данные, на которых построены алгоритмы ИИ — это не артефакты, а трудовые операции. нельзя воспринимать их как нечто готовое к употреблению. мы ведь не едим упаковку от риса или пакет от овощей.
вот и с «данными» так нельзя.

короче, нужно, чтобы отдельные дисциплины аккуратно и последовательно работали с ИИ — как со-производители, а также знающие, умелые пользователи.

точно так же, как есть проблема «ИИ и этики», есть проблема «ИИ и эпистемологии».
нужно выучить всем ещё одно слово на букву «э» и работать с этими проблемами в университете на каждой кафедре. так процветём. иначе — не сможем.



group-telegram.com/wiresandswamps/744
Create:
Last Update:

побывала на конференции Ассоциации «История и компьютер» по приглашению Андрея Володина.

разговор на конференции был так хорош, что я опишу здесь основные для себя тезисы.
дискуссия, в которой я участвовала, значит, была посвящена ИИ в иторической науке. вопросы классические: как быть историками с ИИ.

у меня, как у междисциплинарной исследовательницы, к историкам есть конкретные вопросы или даже запросы. как и к любой науке.

1. модели ИИ сейчас — лингвистические. это значит, что они построены на подходах из науки лингвистики. там довольно специфичное понимание текста, его значения и контекста. такие подходы — не всем подходят, простите за каламбур.
важно, чтобы учёные из других дисциплин разрабатывали свои модели, и была возможность работать не только с лингвистическими теориями, лежащими в основе методов ИИ.

2. в частности, в лингвистических моделях отсутствует историческое понимание данных и алгоритмов. это большая проблема для ИИ: там нет истории, если специально не запрашивать.
нужно, чтобы исторические науки создавали свои, иначе структурированные наборы данных. и выдачу их формировали в своих, иначе структурированных интерфейсах. иначе будет каша мала из топора.

3. для data science нет разницы между данными, информацией, фактами, источниками и знанием. эти понятия для них — плоские и как бы на одном листе.
у историков, как и у любой науки, эти понятия отличаются. работа с архивами и другими инфраструктурами, дающими источники — должна включать сложный отбор и иерархию материалов, из которых берутся данные. а понятие информации — вообще лишнее.

4. фейки и кейсы. эти слова — очень сильно путают.
4.1.
есть исследования, построенные на отдельных случаях (кейсах).
исследования эти потом становятся частью канона, теории строятся на них. потом случаев становится больше, часть догм и канонов пересматривается.
наука должна постоянно отслеживать эти изменения, и уточнять теории и методы, исходя из новых случаев.
если внезапно отрубить у институтов знания связующее звено в треугольнике теория-метод-предмет, у нас выйдет чудище в духе Франкенштейна. так нельзя.

4.2.
слово «фейк» — это лажа. нет фейков.
есть ошибки, недоработки, фальшивки, сфабрикованные артефакты и пр.
зачастую «фейк» — это просто неосмысленный случай. иногда «фейком» оказывается кусок данных, лишённый интерпретации. иногда — наоборот, интерпретация, построенная на устаревшем понимании истины в науке.
короче, говорить «фейк» учёным не стоит. нужно разбираться.

5. данные, на которых построены алгоритмы ИИ — это не артефакты, а трудовые операции. нельзя воспринимать их как нечто готовое к употреблению. мы ведь не едим упаковку от риса или пакет от овощей.
вот и с «данными» так нельзя.

короче, нужно, чтобы отдельные дисциплины аккуратно и последовательно работали с ИИ — как со-производители, а также знающие, умелые пользователи.

точно так же, как есть проблема «ИИ и этики», есть проблема «ИИ и эпистемологии».
нужно выучить всем ещё одно слово на букву «э» и работать с этими проблемами в университете на каждой кафедре. так процветём. иначе — не сможем.

BY провода+болота


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/wiresandswamps/744

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

It is unclear who runs the account, although Russia's official Ministry of Foreign Affairs Twitter account promoted the Telegram channel on Saturday and claimed it was operated by "a group of experts & journalists." Official government accounts have also spread fake fact checks. An official Twitter account for the Russia diplomatic mission in Geneva shared a fake debunking video claiming without evidence that "Western and Ukrainian media are creating thousands of fake news on Russia every day." The video, which has amassed almost 30,000 views, offered a "how-to" spot misinformation. The message was not authentic, with the real Zelenskiy soon denying the claim on his official Telegram channel, but the incident highlighted a major problem: disinformation quickly spreads unchecked on the encrypted app. In February 2014, the Ukrainian people ousted pro-Russian president Viktor Yanukovych, prompting Russia to invade and annex the Crimean peninsula. By the start of April, Pavel Durov had given his notice, with TechCrunch saying at the time that the CEO had resisted pressure to suppress pages criticizing the Russian government. In the past, it was noticed that through bulk SMSes, investors were induced to invest in or purchase the stocks of certain listed companies.
from nl


Telegram провода+болота
FROM American