Warning: mkdir(): No space left on device in /var/www/group-telegram/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/nlpwanderer/--): Failed to open stream: No such file or directory in /var/www/group-telegram/post.php on line 50
NLP Wanderer | Telegram Webview: nlpwanderer/46 -
Telegram Group & Telegram Channel
Хочется еще упомянуть несколько важных свойств автоэнкодеров, которые авторы обнаружили в статье

– У фичей есть своя геометрическая структура, где похожия фичи оказываются близки к друг другу (что ожидаемо). Например, Золотые Ворота близки ко всем остальным достопримечательностям СФ, а отдаленно они связаны с другими популярными местами, типа статуи Иисуса в Рио-де-Жанейро
– Одинаковые фичи оказываются близки в автоэнкодерах всех размеров. Различие между ними в том, что в больших экодерах происходит feature splitting – если в маленькой модели мы найдем какое-то общее понятие, то в больших модель оно разобъется на что-то более конкретное. Вот тут есть интерактивный UMAP
– Нашелся также и scaling law:
Если концепт появляется один раз на миллиард токенов, то нам нужно пропорционально миллиарду активных фич в SAE, чтобы найти ту, которая бы уникально описывала этот концепт
– Для 82% фичей не нашлось сильно скоррелированных нейронов
– Хотя SAE тренировались только на тексте, они оказались способны реагировать и на картинки!
– Фичи отвечают как за абстрактные, так и за конкретные концепты. Например, одна и та же фича активируется на общие рассуждение о безопасности кода, и на конкретные примеры такого кода
– Если модели нужны промежуточные размышления, то активируются фичи, которые отвечают за “пропущенный концепт”. На конкретном примере: если модели нужно ответить на вопрос “Кто был главным соперником команды, в которой играл Коби Брайант”, то больше всего на финальный ответ “Boston Celtics” будут влиять фичи “Коби Брайант” -> его команда “Los Angeles Lakers” (пропущенный концепт) -> фича, отвечающая за спортивные противостояния. Я обожаю, когда в статьях такое находят! По-моему это отличная ответчочка на мнение, что LLM это стохастические попугаи и не понимают, что они генерируют

Спасибо, что дочитали этот лонгрид! Мне очень понравилась статья, и если вас тоже заинтриговала тема mechanistic interpretability, авторы предалагют вот этот гайд: https://neelnanda.io/mechanistic-interpretability/getting-started



group-telegram.com/nlpwanderer/46
Create:
Last Update:

Хочется еще упомянуть несколько важных свойств автоэнкодеров, которые авторы обнаружили в статье

– У фичей есть своя геометрическая структура, где похожия фичи оказываются близки к друг другу (что ожидаемо). Например, Золотые Ворота близки ко всем остальным достопримечательностям СФ, а отдаленно они связаны с другими популярными местами, типа статуи Иисуса в Рио-де-Жанейро
– Одинаковые фичи оказываются близки в автоэнкодерах всех размеров. Различие между ними в том, что в больших экодерах происходит feature splitting – если в маленькой модели мы найдем какое-то общее понятие, то в больших модель оно разобъется на что-то более конкретное. Вот тут есть интерактивный UMAP
– Нашелся также и scaling law:
Если концепт появляется один раз на миллиард токенов, то нам нужно пропорционально миллиарду активных фич в SAE, чтобы найти ту, которая бы уникально описывала этот концепт
– Для 82% фичей не нашлось сильно скоррелированных нейронов
– Хотя SAE тренировались только на тексте, они оказались способны реагировать и на картинки!
– Фичи отвечают как за абстрактные, так и за конкретные концепты. Например, одна и та же фича активируется на общие рассуждение о безопасности кода, и на конкретные примеры такого кода
– Если модели нужны промежуточные размышления, то активируются фичи, которые отвечают за “пропущенный концепт”. На конкретном примере: если модели нужно ответить на вопрос “Кто был главным соперником команды, в которой играл Коби Брайант”, то больше всего на финальный ответ “Boston Celtics” будут влиять фичи “Коби Брайант” -> его команда “Los Angeles Lakers” (пропущенный концепт) -> фича, отвечающая за спортивные противостояния. Я обожаю, когда в статьях такое находят! По-моему это отличная ответчочка на мнение, что LLM это стохастические попугаи и не понимают, что они генерируют

Спасибо, что дочитали этот лонгрид! Мне очень понравилась статья, и если вас тоже заинтриговала тема mechanistic interpretability, авторы предалагют вот этот гайд: https://neelnanda.io/mechanistic-interpretability/getting-started

BY NLP Wanderer




Share with your friend now:
group-telegram.com/nlpwanderer/46

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

At its heart, Telegram is little more than a messaging app like WhatsApp or Signal. But it also offers open channels that enable a single user, or a group of users, to communicate with large numbers in a method similar to a Twitter account. This has proven to be both a blessing and a curse for Telegram and its users, since these channels can be used for both good and ill. Right now, as Wired reports, the app is a key way for Ukrainians to receive updates from the government during the invasion. "For Telegram, accountability has always been a problem, which is why it was so popular even before the full-scale war with far-right extremists and terrorists from all over the world," she told AFP from her safe house outside the Ukrainian capital. "The inflation fire was already hot and now with war-driven inflation added to the mix, it will grow even hotter, setting off a scramble by the world’s central banks to pull back their stimulus earlier than expected," Chris Rupkey, chief economist at FWDBONDS, wrote in an email. "A spike in inflation rates has preceded economic recessions historically and this time prices have soared to levels that once again pose a threat to growth." "Your messages about the movement of the enemy through the official chatbot … bring new trophies every day," the government agency tweeted. Official government accounts have also spread fake fact checks. An official Twitter account for the Russia diplomatic mission in Geneva shared a fake debunking video claiming without evidence that "Western and Ukrainian media are creating thousands of fake news on Russia every day." The video, which has amassed almost 30,000 views, offered a "how-to" spot misinformation.
from us


Telegram NLP Wanderer
FROM American