Telegram Group & Telegram Channel
📍کاربرد هوش مصنوعی در طراحی و بهینه‌سازی سازه‌ها - بخش اول:

● بهینه‌سازی و طراحی سازه‌ها یک فرآیند پیچیده است که نیازمند تحلیل پارامترهای متعددی از جمله ابعاد، شکل، جنس متریال و نیروهای وارد بر سازه می‌باشد. بطور سنتی، این بهینه‌سازی به کمک روش‌های تحلیل عددی مانند تحلیل اجزاء محدود (FEM) انجام می‌شود که زمان‌بر و پرهزینه است.

● هوش مصنوعی و الگوریتم‌های بهینه‌سازی تکاملی همچون الگوریتم ژنتیک (Genetic Algorithm) و الگوریتم‌های یادگیری تقویتی (Reinforcement Learning) با تقلید از فرآیند تکامل طبیعی یا تصمیم‌گیری در شرایط پیچیده، به جستجوی ترکیب‌های مختلف پارامترهای طراحی می‌پردازند و می‌توانند به سرعت به بهینه‌ترین طرح‌ها دست یابند.

● برای پیش‌بینی رفتار سازه‌ها تحت شرایط مختلف (مانند زلزله، باد، بارگذاری‌های ناگهانی و غیره) نیاز به مدل‌های شبیه‌سازی پیچیده‌ای داریم. مدل‌های یادگیری عمیق (Deep Learning) و شبکه‌های عصبی مصنوعی (Artificial Neural Networks) می‌توانند با استفاده از داده‌های تاریخی و تجربی، رفتار سازه‌ها را پیش‌بینی کنند. این مدل‌ها می‌توانند الگوهای مخفی در داده‌ها را شناسایی کنند و به این ترتیب نتایج دقیقی برای پیش‌بینی آسیب‌ها و نقاط ضعف احتمالی در سازه‌ها ارائه دهند. برای مثال، یک شبکه عصبی می‌تواند آموزش ببیند که چگونه رفتار یک ساختمان را تحت تأثیر زلزله‌ با شدت‌های مختلف پیش‌بینی کند و مشخص کند که کدام بخش‌های ساختمان دارای احتمال بیشتری برای خرابی هستند.

● یکی از بزرگ‌ترین چالش‌ها در مهندسی عمران، حل مسائل پیچیده تحلیل سازه‌ای است که نیازمند محاسبات عددی سنگین و مدل‌سازی‌های پیچیده می‌باشد. هوش مصنوعی می‌تواند به تحلیل سریع‌تر و دقیق‌تر مدل‌های پیچیده سازه‌ای کمک کند. برای مثال، می‌توان از مدل‌های یادگیری ماشین به عنوان جایگزین یا مکمل تحلیل‌های اجزاء محدود (FEM) استفاده کرد. مدل‌های هوش مصنوعی می‌توانند بطور خودکار ویژگی‌های مهم سازه‌ای مانند تنش و تغییرشکل را از روی داده‌های قبلی بیاموزند و در زمان تحلیل سازه‌ها، نتایج را با دقت بالا و در زمان کوتاه‌تری پیش‌بینی کنند. این امر می‌تواند به مهندسان اجازه دهد تا طرح‌های مختلف را سریع‌تر بررسی و ارزیابی کنند.

@EngSociety



group-telegram.com/EngSociety/870
Create:
Last Update:

📍کاربرد هوش مصنوعی در طراحی و بهینه‌سازی سازه‌ها - بخش اول:

● بهینه‌سازی و طراحی سازه‌ها یک فرآیند پیچیده است که نیازمند تحلیل پارامترهای متعددی از جمله ابعاد، شکل، جنس متریال و نیروهای وارد بر سازه می‌باشد. بطور سنتی، این بهینه‌سازی به کمک روش‌های تحلیل عددی مانند تحلیل اجزاء محدود (FEM) انجام می‌شود که زمان‌بر و پرهزینه است.

● هوش مصنوعی و الگوریتم‌های بهینه‌سازی تکاملی همچون الگوریتم ژنتیک (Genetic Algorithm) و الگوریتم‌های یادگیری تقویتی (Reinforcement Learning) با تقلید از فرآیند تکامل طبیعی یا تصمیم‌گیری در شرایط پیچیده، به جستجوی ترکیب‌های مختلف پارامترهای طراحی می‌پردازند و می‌توانند به سرعت به بهینه‌ترین طرح‌ها دست یابند.

● برای پیش‌بینی رفتار سازه‌ها تحت شرایط مختلف (مانند زلزله، باد، بارگذاری‌های ناگهانی و غیره) نیاز به مدل‌های شبیه‌سازی پیچیده‌ای داریم. مدل‌های یادگیری عمیق (Deep Learning) و شبکه‌های عصبی مصنوعی (Artificial Neural Networks) می‌توانند با استفاده از داده‌های تاریخی و تجربی، رفتار سازه‌ها را پیش‌بینی کنند. این مدل‌ها می‌توانند الگوهای مخفی در داده‌ها را شناسایی کنند و به این ترتیب نتایج دقیقی برای پیش‌بینی آسیب‌ها و نقاط ضعف احتمالی در سازه‌ها ارائه دهند. برای مثال، یک شبکه عصبی می‌تواند آموزش ببیند که چگونه رفتار یک ساختمان را تحت تأثیر زلزله‌ با شدت‌های مختلف پیش‌بینی کند و مشخص کند که کدام بخش‌های ساختمان دارای احتمال بیشتری برای خرابی هستند.

● یکی از بزرگ‌ترین چالش‌ها در مهندسی عمران، حل مسائل پیچیده تحلیل سازه‌ای است که نیازمند محاسبات عددی سنگین و مدل‌سازی‌های پیچیده می‌باشد. هوش مصنوعی می‌تواند به تحلیل سریع‌تر و دقیق‌تر مدل‌های پیچیده سازه‌ای کمک کند. برای مثال، می‌توان از مدل‌های یادگیری ماشین به عنوان جایگزین یا مکمل تحلیل‌های اجزاء محدود (FEM) استفاده کرد. مدل‌های هوش مصنوعی می‌توانند بطور خودکار ویژگی‌های مهم سازه‌ای مانند تنش و تغییرشکل را از روی داده‌های قبلی بیاموزند و در زمان تحلیل سازه‌ها، نتایج را با دقت بالا و در زمان کوتاه‌تری پیش‌بینی کنند. این امر می‌تواند به مهندسان اجازه دهد تا طرح‌های مختلف را سریع‌تر بررسی و ارزیابی کنند.

@EngSociety

BY کانال صنفی جامعه مهندسی


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/EngSociety/870

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Oleksandra Matviichuk, a Kyiv-based lawyer and head of the Center for Civil Liberties, called Durov’s position "very weak," and urged concrete improvements. Messages are not fully encrypted by default. That means the company could, in theory, access the content of the messages, or be forced to hand over the data at the request of a government. Asked about its stance on disinformation, Telegram spokesperson Remi Vaughn told AFP: "As noted by our CEO, the sheer volume of information being shared on channels makes it extremely difficult to verify, so it's important that users double-check what they read." In February 2014, the Ukrainian people ousted pro-Russian president Viktor Yanukovych, prompting Russia to invade and annex the Crimean peninsula. By the start of April, Pavel Durov had given his notice, with TechCrunch saying at the time that the CEO had resisted pressure to suppress pages criticizing the Russian government. Pavel Durov, a billionaire who embraces an all-black wardrobe and is often compared to the character Neo from "the Matrix," funds Telegram through his personal wealth and debt financing. And despite being one of the world's most popular tech companies, Telegram reportedly has only about 30 employees who defer to Durov for most major decisions about the platform.
from no


Telegram کانال صنفی جامعه مهندسی
FROM American