Telegram Group & Telegram Channel
COCONUT: Учим LLM думать не словами, а эмбеддингами (by Meta)

С появлением моделей серии o1 от OpenAI интерес к "ризонингу" языковых моделей стал расти ещё быстрее. Давно было известно, что если попросить LLM поразмышлять шаг за шагом "вслух", то точность ответов повышается, это называется Chain-of-Thought (CoT). А вы сами-то пробовали с ходу умножать 10-значные числа? Я только в столбик умею "step-by-step" 😁

Так вот, постепенно появляются идеи, что человеческий язык не оптимален для размышлений (вспоминаем QuietSTAR), он их только ограничивает. Более того! Есть исследования, что и люди на самом-то деле не словами думают — языковой отдел в мозге практически не активен в моменты рассуждений.

Вот и авторы COCONUT предлагают цепочку мыслей генерировать не в виде текстовых токенов, а в виде эмбеддингов, которые рекуррентно скармливаются обратно в LLM. Это должно развязывать моделям руки и позволять думать в более абстрактных сущностях, а не конкретными токенами.

Обнаружилось, что у COCONUT появляется суперпозиция нескольких альтернативных логических цепочек, своего рода breadth-first-search внутри эмбеддингов. Это позволило моделям решать задачки на планирование и логику быстрее и точнее, чем при обычном текстовом CoT. Не на всех бенчмарках выросли метрики, но сама идея классная, лично я в масштабирование таких подходов верю больше, чем в рассуждения на обычном языке.

Но пока тут есть два серьёзных минуса:
1. Для файнтюнинга LLM в режиме COCONUT всё ещё нужны ground truth словесные цепочки рассуждений, которые потом дистиллируются в латенты постепенной заменой текстовых шагов на латентные.
2. Обучение жрёт много компьюта и памяти, т.к. по сути это рекуррентная модель, через которую нужно N раз пропустить градиенты насквозь.

P.S. Более подробный разбор можно почитать у Андрея Лукьяненко тут.

Статья, GitHub



group-telegram.com/abstractDL/311
Create:
Last Update:

COCONUT: Учим LLM думать не словами, а эмбеддингами (by Meta)

С появлением моделей серии o1 от OpenAI интерес к "ризонингу" языковых моделей стал расти ещё быстрее. Давно было известно, что если попросить LLM поразмышлять шаг за шагом "вслух", то точность ответов повышается, это называется Chain-of-Thought (CoT). А вы сами-то пробовали с ходу умножать 10-значные числа? Я только в столбик умею "step-by-step" 😁

Так вот, постепенно появляются идеи, что человеческий язык не оптимален для размышлений (вспоминаем QuietSTAR), он их только ограничивает. Более того! Есть исследования, что и люди на самом-то деле не словами думают — языковой отдел в мозге практически не активен в моменты рассуждений.

Вот и авторы COCONUT предлагают цепочку мыслей генерировать не в виде текстовых токенов, а в виде эмбеддингов, которые рекуррентно скармливаются обратно в LLM. Это должно развязывать моделям руки и позволять думать в более абстрактных сущностях, а не конкретными токенами.

Обнаружилось, что у COCONUT появляется суперпозиция нескольких альтернативных логических цепочек, своего рода breadth-first-search внутри эмбеддингов. Это позволило моделям решать задачки на планирование и логику быстрее и точнее, чем при обычном текстовом CoT. Не на всех бенчмарках выросли метрики, но сама идея классная, лично я в масштабирование таких подходов верю больше, чем в рассуждения на обычном языке.

Но пока тут есть два серьёзных минуса:
1. Для файнтюнинга LLM в режиме COCONUT всё ещё нужны ground truth словесные цепочки рассуждений, которые потом дистиллируются в латенты постепенной заменой текстовых шагов на латентные.
2. Обучение жрёт много компьюта и памяти, т.к. по сути это рекуррентная модель, через которую нужно N раз пропустить градиенты насквозь.

P.S. Более подробный разбор можно почитать у Андрея Лукьяненко тут.

Статья, GitHub

BY AbstractDL




Share with your friend now:
group-telegram.com/abstractDL/311

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

In 2018, Russia banned Telegram although it reversed the prohibition two years later. "And that set off kind of a battle royale for control of the platform that Durov eventually lost," said Nathalie Maréchal of the Washington advocacy group Ranking Digital Rights. Recently, Durav wrote on his Telegram channel that users' right to privacy, in light of the war in Ukraine, is "sacred, now more than ever." Such instructions could actually endanger people — citizens receive air strike warnings via smartphone alerts. One thing that Telegram now offers to all users is the ability to “disappear” messages or set remote deletion deadlines. That enables users to have much more control over how long people can access what you’re sending them. Given that Russian law enforcement officials are reportedly (via Insider) stopping people in the street and demanding to read their text messages, this could be vital to protect individuals from reprisals.
from no


Telegram AbstractDL
FROM American