Telegram Group & Telegram Channel
⚡️SD3-Turbo: Fast High-Resolution Image Synthesis with Latent Adversarial Diffusion Distillation

Вслед за Stable Diffusion 3 мои друзья опуликовали препринт о дистилляции SD3 в 4-шага, сохраняя качество.

Новый метод - Latent Adversarial Diffusion Distillation (LADD), который похож на ADD (был пост про него), но с рядом отличий:

↪️ И учитель и студент тут на архитектуре SD3 на базе трансформеров. Самая большая и самая лучшая модель - 8B параметров.

↪️ Вместо DINOv2 дискриминатора, работающего на RGB пикселях, в этой статье предлагают все же вернуться к дискриминатору в latent space, чтобы работало быстрее и жрало меньше памяти.

↪️ В качестве дискриминатора берут копию учителя (то есть дискриминатор тренировался не дискриминативно, как в случае DINO, а генеративно). После каждого attention блока добавляют голову дискриминатора с 2D conv слоями, классифицирующую real/fake. Таким образом дискриминатор смотрит не только на финалный результат, но и на все промежуточные фичи, что усиливает тренировочный сигнал.

↪️ Тренят на картинках с разным aspect ratio, а не только на квадратах 1:1.

↪️Убрали  L2 reconstruction loss между выходами Учителя и Студента. Говорят, что тупо дискриминатора достаточно, если умно выбрать распределение семплирования шагов t.

↪️ Во время трейна более часто сеплируют t с большим шумом, чтобы студент лучше учился генерить глобальную структуру объектов.

↪️ Дистиллируют на синтетических данных, которые сгенерил учитель, а не на фото из датасета, как это было в ADD.

Еще из прикольного показали, что DPO-LoRA тюнинг хорошо так добрасывает в качество генераций студента.

Итого, получаем SD3-Turbo модель, которая за 4 шага выдает красивые картинки. Судя по небольшому Human Eval, который авторы провели всего на 128 промптах, по image quality студент сравним с учителем. А вот prompt alignment у студента хромает, что в целом ожидаемо.

Ещё показали, что SD3-Turbo лучше чем Midjourney 6 и по качеству и по prompt alignment, что удивляет 🫥. Ждем веса, чтобы провести reality check!

Статья

@ai_newz
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/ai_newz/2493
Create:
Last Update:

⚡️SD3-Turbo: Fast High-Resolution Image Synthesis with Latent Adversarial Diffusion Distillation

Вслед за Stable Diffusion 3 мои друзья опуликовали препринт о дистилляции SD3 в 4-шага, сохраняя качество.

Новый метод - Latent Adversarial Diffusion Distillation (LADD), который похож на ADD (был пост про него), но с рядом отличий:

↪️ И учитель и студент тут на архитектуре SD3 на базе трансформеров. Самая большая и самая лучшая модель - 8B параметров.

↪️ Вместо DINOv2 дискриминатора, работающего на RGB пикселях, в этой статье предлагают все же вернуться к дискриминатору в latent space, чтобы работало быстрее и жрало меньше памяти.

↪️ В качестве дискриминатора берут копию учителя (то есть дискриминатор тренировался не дискриминативно, как в случае DINO, а генеративно). После каждого attention блока добавляют голову дискриминатора с 2D conv слоями, классифицирующую real/fake. Таким образом дискриминатор смотрит не только на финалный результат, но и на все промежуточные фичи, что усиливает тренировочный сигнал.

↪️ Тренят на картинках с разным aspect ratio, а не только на квадратах 1:1.

↪️Убрали  L2 reconstruction loss между выходами Учителя и Студента. Говорят, что тупо дискриминатора достаточно, если умно выбрать распределение семплирования шагов t.

↪️ Во время трейна более часто сеплируют t с большим шумом, чтобы студент лучше учился генерить глобальную структуру объектов.

↪️ Дистиллируют на синтетических данных, которые сгенерил учитель, а не на фото из датасета, как это было в ADD.

Еще из прикольного показали, что DPO-LoRA тюнинг хорошо так добрасывает в качество генераций студента.

Итого, получаем SD3-Turbo модель, которая за 4 шага выдает красивые картинки. Судя по небольшому Human Eval, который авторы провели всего на 128 промптах, по image quality студент сравним с учителем. А вот prompt alignment у студента хромает, что в целом ожидаемо.

Ещё показали, что SD3-Turbo лучше чем Midjourney 6 и по качеству и по prompt alignment, что удивляет 🫥. Ждем веса, чтобы провести reality check!

Статья

@ai_newz

BY эйай ньюз






Share with your friend now:
group-telegram.com/ai_newz/2493

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

What distinguishes the app from competitors is its use of what's known as channels: Public or private feeds of photos and videos that can be set up by one person or an organization. The channels have become popular with on-the-ground journalists, aid workers and Ukrainian President Volodymyr Zelenskyy, who broadcasts on a Telegram channel. The channels can be followed by an unlimited number of people. Unlike Facebook, Twitter and other popular social networks, there is no advertising on Telegram and the flow of information is not driven by an algorithm. The news also helped traders look past another report showing decades-high inflation and shake off some of the volatility from recent sessions. The Bureau of Labor Statistics' February Consumer Price Index (CPI) this week showed another surge in prices even before Russia escalated its attacks in Ukraine. The headline CPI — soaring 7.9% over last year — underscored the sticky inflationary pressures reverberating across the U.S. economy, with everything from groceries to rents and airline fares getting more expensive for everyday consumers. These administrators had built substantial positions in these scrips prior to the circulation of recommendations and offloaded their positions subsequent to rise in price of these scrips, making significant profits at the expense of unsuspecting investors, Sebi noted. Telegram users are able to send files of any type up to 2GB each and access them from any device, with no limit on cloud storage, which has made downloading files more popular on the platform. For tech stocks, “the main thing is yields,” Essaye said.
from no


Telegram эйай ньюз
FROM American