Telegram Group & Telegram Channel
ХОЛОДНЫЙ РАСЧЕТ ∅
🔮 Риск рецессии: Рынок госдолга vs. Экономисты • Наш индикатор вероятности рецессии опирается на разницу между доходностями на ближнем и длиннем концах кривой доходности госдолга - ее "наклоне" В этом спреде есть полезный сигнал о риске рецессии по одной…
🐍 Риск рецессии: Как оценить самостоятельно?

• После заседания наклон кривой снизился с 2.9 процентных пунктов до 0.5 процентного пункта: меньше наклон => меньше предложение кредита => выше вероятность рецессии

Наша оценка риска выросла до 21%, но эти оценки зависят от большого числа относительно произвольных решений при выборе модели:

• какие месяцы в прошлом были рецессией, а какие нет?

• как мерять наклон кривой: как разницу доходностями 10 лет и 3 мес.? 5 лет и 2 года? 10 и 2 года?

• строим опережающий или одновременный индикатор риска? опережающий на сколько месяцев? и так далее

🪄 Вы можете самостоятельно построить свой индикатор риска рецессии за пару шагов:

• Загружаем pandas и sklearn:

import pandas as pd
from sklearn.linear_model import LogisticRegression


• забираем данные об исторических значениях кривой доходности у МосБрижи

• Сохраняем их в файлик и считаем там наклон 'slope':

df_yc_cc = pd.read_excel(PATH, index_col='ds')

• Определяем рецессию по вкусу:

df_rec = pd.DataFrame(index = pd.date_range(start='2003-01',end='2023-08',freq='MS'))

df_rec['R'] = 0
df_rec.loc['2008-09':'2009-02','R'] = 1
df_rec.loc['2014-11':'2015-06','R'] = 1
df_rec.loc['2019-12':'2020-06','R'] = 1
df_rec.loc['2021-11':'2022-06','R'] = 1


• Складываем наклон и переменную рецессии вместе:

df_xy = pd.merge(
df_yc[['slope']]
, df_rec[['R']]
, left_index=True
, right_index=True) \
.dropna()
X, y = df_xy[['slope']], df_xy['R']


• Оцениваем логит:

mod_lr = LogisticRegression()
mod_lr.fit(X, y)


• Готово - можем подставить какой-то наклон x и оценить риск рецессии:

x = XXX
mod_lr.predict_proba(pd.DataFrame(data=[[x]],columns=['slope']))

@c0ldness



group-telegram.com/c0ldness/1675
Create:
Last Update:

🐍 Риск рецессии: Как оценить самостоятельно?

• После заседания наклон кривой снизился с 2.9 процентных пунктов до 0.5 процентного пункта: меньше наклон => меньше предложение кредита => выше вероятность рецессии

Наша оценка риска выросла до 21%, но эти оценки зависят от большого числа относительно произвольных решений при выборе модели:

• какие месяцы в прошлом были рецессией, а какие нет?

• как мерять наклон кривой: как разницу доходностями 10 лет и 3 мес.? 5 лет и 2 года? 10 и 2 года?

• строим опережающий или одновременный индикатор риска? опережающий на сколько месяцев? и так далее

🪄 Вы можете самостоятельно построить свой индикатор риска рецессии за пару шагов:

• Загружаем pandas и sklearn:

import pandas as pd
from sklearn.linear_model import LogisticRegression


• забираем данные об исторических значениях кривой доходности у МосБрижи

• Сохраняем их в файлик и считаем там наклон 'slope':

df_yc_cc = pd.read_excel(PATH, index_col='ds')

• Определяем рецессию по вкусу:

df_rec = pd.DataFrame(index = pd.date_range(start='2003-01',end='2023-08',freq='MS'))

df_rec['R'] = 0
df_rec.loc['2008-09':'2009-02','R'] = 1
df_rec.loc['2014-11':'2015-06','R'] = 1
df_rec.loc['2019-12':'2020-06','R'] = 1
df_rec.loc['2021-11':'2022-06','R'] = 1


• Складываем наклон и переменную рецессии вместе:

df_xy = pd.merge(
df_yc[['slope']]
, df_rec[['R']]
, left_index=True
, right_index=True) \
.dropna()
X, y = df_xy[['slope']], df_xy['R']


• Оцениваем логит:

mod_lr = LogisticRegression()
mod_lr.fit(X, y)


• Готово - можем подставить какой-то наклон x и оценить риск рецессии:

x = XXX
mod_lr.predict_proba(pd.DataFrame(data=[[x]],columns=['slope']))

@c0ldness

BY ХОЛОДНЫЙ РАСЧЕТ ∅





Share with your friend now:
group-telegram.com/c0ldness/1675

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The Dow Jones Industrial Average fell 230 points, or 0.7%. Meanwhile, the S&P 500 and the Nasdaq Composite dropped 1.3% and 2.2%, respectively. All three indexes began the day with gains before selling off. At the start of 2018, the company attempted to launch an Initial Coin Offering (ICO) which would enable it to enable payments (and earn the cash that comes from doing so). The initial signals were promising, especially given Telegram’s user base is already fairly crypto-savvy. It raised an initial tranche of cash – worth more than a billion dollars – to help develop the coin before opening sales to the public. Unfortunately, third-party sales of coins bought in those initial fundraising rounds raised the ire of the SEC, which brought the hammer down on the whole operation. In 2020, officials ordered Telegram to pay a fine of $18.5 million and hand back much of the cash that it had raised. Despite Telegram's origins, its approach to users' security has privacy advocates worried. Ukrainian President Volodymyr Zelensky said in a video message on Tuesday that Ukrainian forces "destroy the invaders wherever we can." The Securities and Exchange Board of India (Sebi) had carried out a similar exercise in 2017 in a matter related to circulation of messages through WhatsApp.
from no


Telegram ХОЛОДНЫЙ РАСЧЕТ ∅
FROM American