Telegram Group & Telegram Channel
Кто должен был быть в первых рядах приемки модели предыдущего кандидата и задавать ему каверзные вопросы?

Верно, речь пойдет про аналитиков

Несколько лет назад меня пригласили прочитать лекцию правлению одного крупного промышленного банка дружественной республики бывшего союза.
Задача была в духе как наладить дата-функцию так чтобы побыстрее с этого заработать, основной упор на кейсы, причем, кроме рисковых и бизнесовых, обсудили даже комплаенс и казну.
В банках вообще есть где развернуться в плане ML )

Много было вопросов по кейсам, но особенно живой интерес возник когда я сказал что аналитики им не нужны – мол, все равно вы не умеете ими пользоваться – что поделать, люблю чуть-чуть набросить 🤓.

Как я вижу работу дата-аналитика:
▪️ дизайн экспериментов / пост-эксперименты (блокинг, матчинг, каузальные выводы)
▪️ кейс-менеджмент
▪️ построение дерева метрик, исследование взаимного влияния метрик друг на друга
▪️ поиск прокси-метрик и прокси-событий
▪️ фин. модели для отмахивания от финансистов и аудиторов

Истории с прототипированием витрин, проверками данных, визуализации, первичную бизнес-валидацию – оставляю за DS, это обязательная и очень большая часть его работы

Истории с сегментацией / кластеризацией клиентской базы – свое отношение к таким “задачам” я в одном из первых постов высказал.

Как чаще всего используют аналитиков в компаниях, в которых продуктовая культура, скажем так, не особенно вызрела?
▪️ черная работа, которую не хочет делать DS / MLE / PO и остальные.
▪️ ad-hoc по велению левой пятки PO / CPO / любого другого манагера / канальи из соседнего отдела / управления / блока / департамента и пр. И суету создает и ЧСВ манагера растит.

И вот последнее отнимает 90-95% времени аналитиков.
Как с этим бороться? Обычно просто частотные запросы оформляют в дэш и берут на поддержку.
Еще были попытки text2sql, но тогда контекста моделей не хватало (да ис. бизнес-глоссариями было не так ровно как хотелось бы)

А как еще? (здесь каюсь, хорошая мысля приходит опосля – хоть я и боролся с ad-hoc, формализовать догадался только лишь потом):
▪️ Требовать дерево решений: вот насчитаю вам, уважаемый заказчик, требуемые показатели. Какие управленческие решения при каких значениях показателей вы сможете принять? Или просто посмотрите и огорчитесь?
▪️ Выдавать доступы к песочницам почти всем – дать им в руки BI с конструктором

Достаточно долго я так жил и работал, пока не так давно не возник следующий диалог с камрадом:

– Вы сколько на моделях в этом крупном направлении за год заработали?
– Ну, xxx млн.
– А у нас (компания Y) аналитики (!) за месяц столько же
– ???


Итак, суть кейса:
аналитики как обычно генерили свои смешные гипотезы, и в результате проверки одной из них выяснилось следующее: пару лет назад компания Y привлекала клиентов, предлагая им трехмесячную скидку. Аналитики выяснили что разрабы накосячили и скидки не отключились через 3 мес (!). То есть все такие клиенты до сих получают услуги по тем льготным тарифам. Дальше они взяли скоры от модели оттока и начали самым лояльным по этим скорам скидку отменять. Потихоньку, не сразу все базу.

Конечно, без DS они не обошлись (модель оттока все-таки наша), но сам факт!
В итоге мнение о дата-аналитиках и их полезности я сильно поменял. ☺️

Если у вас прикольные кейсы файндингов дата-аналитиков -- не держите в себе, поделитесь, пожалуйста в комментариях



group-telegram.com/datarascals/127
Create:
Last Update:

Кто должен был быть в первых рядах приемки модели предыдущего кандидата и задавать ему каверзные вопросы?

Верно, речь пойдет про аналитиков

Несколько лет назад меня пригласили прочитать лекцию правлению одного крупного промышленного банка дружественной республики бывшего союза.
Задача была в духе как наладить дата-функцию так чтобы побыстрее с этого заработать, основной упор на кейсы, причем, кроме рисковых и бизнесовых, обсудили даже комплаенс и казну.
В банках вообще есть где развернуться в плане ML )

Много было вопросов по кейсам, но особенно живой интерес возник когда я сказал что аналитики им не нужны – мол, все равно вы не умеете ими пользоваться – что поделать, люблю чуть-чуть набросить 🤓.

Как я вижу работу дата-аналитика:
▪️ дизайн экспериментов / пост-эксперименты (блокинг, матчинг, каузальные выводы)
▪️ кейс-менеджмент
▪️ построение дерева метрик, исследование взаимного влияния метрик друг на друга
▪️ поиск прокси-метрик и прокси-событий
▪️ фин. модели для отмахивания от финансистов и аудиторов

Истории с прототипированием витрин, проверками данных, визуализации, первичную бизнес-валидацию – оставляю за DS, это обязательная и очень большая часть его работы

Истории с сегментацией / кластеризацией клиентской базы – свое отношение к таким “задачам” я в одном из первых постов высказал.

Как чаще всего используют аналитиков в компаниях, в которых продуктовая культура, скажем так, не особенно вызрела?
▪️ черная работа, которую не хочет делать DS / MLE / PO и остальные.
▪️ ad-hoc по велению левой пятки PO / CPO / любого другого манагера / канальи из соседнего отдела / управления / блока / департамента и пр. И суету создает и ЧСВ манагера растит.

И вот последнее отнимает 90-95% времени аналитиков.
Как с этим бороться? Обычно просто частотные запросы оформляют в дэш и берут на поддержку.
Еще были попытки text2sql, но тогда контекста моделей не хватало (да ис. бизнес-глоссариями было не так ровно как хотелось бы)

А как еще? (здесь каюсь, хорошая мысля приходит опосля – хоть я и боролся с ad-hoc, формализовать догадался только лишь потом):
▪️ Требовать дерево решений: вот насчитаю вам, уважаемый заказчик, требуемые показатели. Какие управленческие решения при каких значениях показателей вы сможете принять? Или просто посмотрите и огорчитесь?
▪️ Выдавать доступы к песочницам почти всем – дать им в руки BI с конструктором

Достаточно долго я так жил и работал, пока не так давно не возник следующий диалог с камрадом:

– Вы сколько на моделях в этом крупном направлении за год заработали?
– Ну, xxx млн.
– А у нас (компания Y) аналитики (!) за месяц столько же
– ???


Итак, суть кейса:
аналитики как обычно генерили свои смешные гипотезы, и в результате проверки одной из них выяснилось следующее: пару лет назад компания Y привлекала клиентов, предлагая им трехмесячную скидку. Аналитики выяснили что разрабы накосячили и скидки не отключились через 3 мес (!). То есть все такие клиенты до сих получают услуги по тем льготным тарифам. Дальше они взяли скоры от модели оттока и начали самым лояльным по этим скорам скидку отменять. Потихоньку, не сразу все базу.

Конечно, без DS они не обошлись (модель оттока все-таки наша), но сам факт!
В итоге мнение о дата-аналитиках и их полезности я сильно поменял. ☺️

Если у вас прикольные кейсы файндингов дата-аналитиков -- не держите в себе, поделитесь, пожалуйста в комментариях

BY Дата канальи — про «специалистов» в данных / ML / AI




Share with your friend now:
group-telegram.com/datarascals/127

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

In addition, Telegram's architecture limits the ability to slow the spread of false information: the lack of a central public feed, and the fact that comments are easily disabled in channels, reduce the space for public pushback. The last couple days have exemplified that uncertainty. On Thursday, news emerged that talks in Turkey between the Russia and Ukraine yielded no positive result. But on Friday, Reuters reported that Russian President Vladimir Putin said there had been some “positive shifts” in talks between the two sides. "For Telegram, accountability has always been a problem, which is why it was so popular even before the full-scale war with far-right extremists and terrorists from all over the world," she told AFP from her safe house outside the Ukrainian capital. The SC urges the public to refer to the SC’s I nvestor Alert List before investing. The list contains details of unauthorised websites, investment products, companies and individuals. Members of the public who suspect that they have been approached by unauthorised firms or individuals offering schemes that promise unrealistic returns The channel appears to be part of the broader information war that has developed following Russia's invasion of Ukraine. The Kremlin has paid Russian TikTok influencers to push propaganda, according to a Vice News investigation, while ProPublica found that fake Russian fact check videos had been viewed over a million times on Telegram.
from no


Telegram Дата канальи — про «специалистов» в данных / ML / AI
FROM American