Telegram Group & Telegram Channel
Сегодня хочется порассуждать вслух, куда инвестировать свои силы в контексте этих ваших больших языковых моделей. В больших компаниях типа гугла всегда есть много точек входа в базовый продукт, и всегда можно поработать над тем, что важно лично тебе в текущий момент. 😛

Всего мыслей получилось три, что является олимпийским рекордом для LLM-рисёрчера. 🤤

Мысль первая: мне кажется, что нас ждёт гонка вооружений в моделях размером до трёх миллиардов параметров. Apple Intelligence питает LLMка с 3B параметров, но на рынке андроид-телефонов много откровенно слабых моделей, так что, скорее всего, гуглу придётся заталкивать в телефоны что-то поменьше. 👥 Из последних релизов наши друзья из Alibaba выпустили Qwen 2 в размерах 0.5B и 1.5B – достаточно, чтобы запускать на не самых продвинутых телефонах. Ещё интересно, кто сможет первым выкатить приватную тренировку LoRA-адаптеров прямо на устройстве – это должно сильно поднять качество для текстинга.

Мысль вторая: в категории средних моделей – скажем, до 100 миллиардов параметров, начинается жёсткая конкуренция за стоимость доступа по API. Основной юзкейс в этой области – это всякие ии-ассистены и агенты, которые должны совсем вымораживать при общении. Здесь очень важен пост-тренинг; хоть все и хают неприлично высокие результаты GPT-4o и 4o mini, нормальное следование инструкциям и приятные глазу ответы 🥹 – то, что нужно для этих ваших бизнесов.

Мысль третья: специфические модели для программирования. Тут пока нишу безоговорочно занял DeepSeek Coder v2. Я пока не очень понимаю, где тут деньги для бизнеса – программисты любят платить разве что за подержанный матрац; с другой стороны, говорят, что умение программировать – это почти что заветный reasoning, а там и до AGI рукой подать. Опять же, мне кажется, что в целом после претрейна модели обладают достаточными знаниями, и проблема в кодинг-LLMках заключается в посттренинге – например, Gemini 1.5 Pro поднялся на livebench в категории кодинга на 9% – это почти разница между 4o и 3.5 Sonnet. 📈

При всём этом, забывать о больших моделях я не собираюсь. Хоть LLM-пухляши и тренируются долго 🥁, вау-эффекта от моделей поменьше ждать пока не приходится. На всякий случай – мой пост – это не анонс анонса и не слив, как любят делать наши открытые ИИ-друзья 🪖. Результаты работы, особенно в претрейне, видны публично через месяцы. Так что запасаемся терпением вместе. 😮‍💨

Кстати пока ждём, напомню, что у нашего Gemini 1.5 Flash бесплатно можно сделать 1500 бесплатных запросов в день с запросами до миллиона токенов – у OpenAI эквивалентная модель GPT-4o-mini обойдётся вам в ~$25 ежедневно. На сдачу вы теперь можете поставить мне блестящую звёздочку под постом, а я вам взамен обещаю не использовать их ни на что полезное. 🤑
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/epsiloncorrect/189
Create:
Last Update:

Сегодня хочется порассуждать вслух, куда инвестировать свои силы в контексте этих ваших больших языковых моделей. В больших компаниях типа гугла всегда есть много точек входа в базовый продукт, и всегда можно поработать над тем, что важно лично тебе в текущий момент. 😛

Всего мыслей получилось три, что является олимпийским рекордом для LLM-рисёрчера. 🤤

Мысль первая: мне кажется, что нас ждёт гонка вооружений в моделях размером до трёх миллиардов параметров. Apple Intelligence питает LLMка с 3B параметров, но на рынке андроид-телефонов много откровенно слабых моделей, так что, скорее всего, гуглу придётся заталкивать в телефоны что-то поменьше. 👥 Из последних релизов наши друзья из Alibaba выпустили Qwen 2 в размерах 0.5B и 1.5B – достаточно, чтобы запускать на не самых продвинутых телефонах. Ещё интересно, кто сможет первым выкатить приватную тренировку LoRA-адаптеров прямо на устройстве – это должно сильно поднять качество для текстинга.

Мысль вторая: в категории средних моделей – скажем, до 100 миллиардов параметров, начинается жёсткая конкуренция за стоимость доступа по API. Основной юзкейс в этой области – это всякие ии-ассистены и агенты, которые должны совсем вымораживать при общении. Здесь очень важен пост-тренинг; хоть все и хают неприлично высокие результаты GPT-4o и 4o mini, нормальное следование инструкциям и приятные глазу ответы 🥹 – то, что нужно для этих ваших бизнесов.

Мысль третья: специфические модели для программирования. Тут пока нишу безоговорочно занял DeepSeek Coder v2. Я пока не очень понимаю, где тут деньги для бизнеса – программисты любят платить разве что за подержанный матрац; с другой стороны, говорят, что умение программировать – это почти что заветный reasoning, а там и до AGI рукой подать. Опять же, мне кажется, что в целом после претрейна модели обладают достаточными знаниями, и проблема в кодинг-LLMках заключается в посттренинге – например, Gemini 1.5 Pro поднялся на livebench в категории кодинга на 9% – это почти разница между 4o и 3.5 Sonnet. 📈

При всём этом, забывать о больших моделях я не собираюсь. Хоть LLM-пухляши и тренируются долго 🥁, вау-эффекта от моделей поменьше ждать пока не приходится. На всякий случай – мой пост – это не анонс анонса и не слив, как любят делать наши открытые ИИ-друзья 🪖. Результаты работы, особенно в претрейне, видны публично через месяцы. Так что запасаемся терпением вместе. 😮‍💨

Кстати пока ждём, напомню, что у нашего Gemini 1.5 Flash бесплатно можно сделать 1500 бесплатных запросов в день с запросами до миллиона токенов – у OpenAI эквивалентная модель GPT-4o-mini обойдётся вам в ~$25 ежедневно. На сдачу вы теперь можете поставить мне блестящую звёздочку под постом, а я вам взамен обещаю не использовать их ни на что полезное. 🤑

BY epsilon correct


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/epsiloncorrect/189

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Pavel Durov, Telegram's CEO, is known as "the Russian Mark Zuckerberg," for co-founding VKontakte, which is Russian for "in touch," a Facebook imitator that became the country's most popular social networking site. He said that since his platform does not have the capacity to check all channels, it may restrict some in Russia and Ukraine "for the duration of the conflict," but then reversed course hours later after many users complained that Telegram was an important source of information. Just days after Russia invaded Ukraine, Durov wrote that Telegram was "increasingly becoming a source of unverified information," and he worried about the app being used to "incite ethnic hatred." To that end, when files are actively downloading, a new icon now appears in the Search bar that users can tap to view and manage downloads, pause and resume all downloads or just individual items, and select one to increase its priority or view it in a chat. Following this, Sebi, in an order passed in January 2022, established that the administrators of a Telegram channel having a large subscriber base enticed the subscribers to act upon recommendations that were circulated by those administrators on the channel, leading to significant price and volume impact in various scrips.
from no


Telegram epsilon correct
FROM American