\sqrt{r^2 + (vt)^2} = r \sqrt{1 + (vt/r)^2} = r + (1/2) (vt)^2 / r + o(t^2), так что вторая производная равна
v^2/r = (vr)^2 / r^3.
Числитель — (vr)^2 — это квадрат углового момента. Так что он вдоль орбиты всегда один и тот же! А знаменатель r^3 — как раз и соответствует закону всемирного тяготения: куб, как и раньше. Так что, если взять константу l = (vr)^2/ (GM), то для разницы (r-l) будет (r-l)’’ = r’’ = hr + (vr)^2 / r^3 = - GM r / r^3 + (vr)^2 / r^3 = - GM / r^3 * (r- l) = h (r-l).
Так что трёхмерный вектор R = (x,y,r-l) подчиняется центральному закону R’’ = h R, h = -GM/r^3.
\sqrt{r^2 + (vt)^2} = r \sqrt{1 + (vt/r)^2} = r + (1/2) (vt)^2 / r + o(t^2), так что вторая производная равна
v^2/r = (vr)^2 / r^3.
Числитель — (vr)^2 — это квадрат углового момента. Так что он вдоль орбиты всегда один и тот же! А знаменатель r^3 — как раз и соответствует закону всемирного тяготения: куб, как и раньше. Так что, если взять константу l = (vr)^2/ (GM), то для разницы (r-l) будет (r-l)’’ = r’’ = hr + (vr)^2 / r^3 = - GM r / r^3 + (vr)^2 / r^3 = - GM / r^3 * (r- l) = h (r-l).
Так что трёхмерный вектор R = (x,y,r-l) подчиняется центральному закону R’’ = h R, h = -GM/r^3.
Ура — теорема доказана!
BY Математические байки
Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260
Apparently upbeat developments in Russia's discussions with Ukraine helped at least temporarily send investors back into risk assets. Russian President Vladimir Putin said during a meeting with his Belarusian counterpart Alexander Lukashenko that there were "certain positive developments" occurring in the talks with Ukraine, according to a transcript of their meeting. Putin added that discussions were happening "almost on a daily basis." The account, "War on Fakes," was created on February 24, the same day Russian President Vladimir Putin announced a "special military operation" and troops began invading Ukraine. The page is rife with disinformation, according to The Atlantic Council's Digital Forensic Research Lab, which studies digital extremism and published a report examining the channel. "There is a significant risk of insider threat or hacking of Telegram systems that could expose all of these chats to the Russian government," said Eva Galperin with the Electronic Frontier Foundation, which has called for Telegram to improve its privacy practices. For Oleksandra Tsekhanovska, head of the Hybrid Warfare Analytical Group at the Kyiv-based Ukraine Crisis Media Center, the effects are both near- and far-reaching. As such, the SC would like to remind investors to always exercise caution when evaluating investment opportunities, especially those promising unrealistically high returns with little or no risk. Investors should also never deposit money into someone’s personal bank account if instructed.
from no