Telegram Group & Telegram Channel
О размере эффекта и расчете объема выборки в научных задачах

Я в последнее время активно читаю теорию A/B-тестирования. По сути это классические эксперименты с контрольной и тестовой группами (case/control), с которыми постоянно сталкиваются ученые, но с учетом особенностей бизнеса.

📊 Важным этапом при проведении A/B-тестирования является расчет MDE (minimum detectable effect), минимально обнаруживаемый эффект. Например, в эксперименте мы хотим зафиксировать увеличение конверсии на 2% и мы можем рассчитать необходимый размер выборки для тестовой и контрольной группы, исходя из этого. Для этого нам нужно знать минимально обнаруживаемый размер эффекта (определили выше), дисперсию в контрольной и тестовой группе, а также уровень ошибки первого рода (стандартно 0.05) и желаемую мощность теста (обычно 80%).

На всякий случай напомню: мощность - это вероятность найти статистически значимые различия там, где они действительно есть (то есть единица минус вероятность ошибки II рода, про ошибки мнемоническое правило в прикрепленной картинке)

Меня заинтриговал этот подход, потому что он отталкивается от практических соображений.
🌱Интересно было бы применить такой концепт в биологических исследованиях. Например, сначала определить, какой эффект был бы биологически значимым, и после этого рассчитывать необходимый размер выборки. К примеру, мы изучаем влияние фитогормона на рост корня и знаем по предыдущим экспериментам длину корня растений определенного возраста (также можем рассчитать дисперсию). Можно зафиксировать, что для нас биологически важным будет изменение длины корня на 10%. После этого по формуле MDE, мы можем рассчитать необходимый размер выборки, чтобы зафиксировать такой эффект.
🐀 Хорошо, если полученный размер выборки окажется допустимым для исследования, так как при работе с мышами или другими животными, есть риск, что необходимый статистически размер выборки не одобрит биоэтический комитет.
Но тут есть такая особенность, что чем больше эффект, тем меньше нужна выборка, чтобы его обнаружить. Можно для себя решить, что совсем небольшие изменения не несут особой биологической ценности и рассчитывать выборку для бОльших эффектов.

Как вы думаете, возможен ли такой подход в научных исследованиях?

#product #analytics



group-telegram.com/stats_for_science/111
Create:
Last Update:

О размере эффекта и расчете объема выборки в научных задачах

Я в последнее время активно читаю теорию A/B-тестирования. По сути это классические эксперименты с контрольной и тестовой группами (case/control), с которыми постоянно сталкиваются ученые, но с учетом особенностей бизнеса.

📊 Важным этапом при проведении A/B-тестирования является расчет MDE (minimum detectable effect), минимально обнаруживаемый эффект. Например, в эксперименте мы хотим зафиксировать увеличение конверсии на 2% и мы можем рассчитать необходимый размер выборки для тестовой и контрольной группы, исходя из этого. Для этого нам нужно знать минимально обнаруживаемый размер эффекта (определили выше), дисперсию в контрольной и тестовой группе, а также уровень ошибки первого рода (стандартно 0.05) и желаемую мощность теста (обычно 80%).

На всякий случай напомню: мощность - это вероятность найти статистически значимые различия там, где они действительно есть (то есть единица минус вероятность ошибки II рода, про ошибки мнемоническое правило в прикрепленной картинке)

Меня заинтриговал этот подход, потому что он отталкивается от практических соображений.
🌱Интересно было бы применить такой концепт в биологических исследованиях. Например, сначала определить, какой эффект был бы биологически значимым, и после этого рассчитывать необходимый размер выборки. К примеру, мы изучаем влияние фитогормона на рост корня и знаем по предыдущим экспериментам длину корня растений определенного возраста (также можем рассчитать дисперсию). Можно зафиксировать, что для нас биологически важным будет изменение длины корня на 10%. После этого по формуле MDE, мы можем рассчитать необходимый размер выборки, чтобы зафиксировать такой эффект.
🐀 Хорошо, если полученный размер выборки окажется допустимым для исследования, так как при работе с мышами или другими животными, есть риск, что необходимый статистически размер выборки не одобрит биоэтический комитет.
Но тут есть такая особенность, что чем больше эффект, тем меньше нужна выборка, чтобы его обнаружить. Можно для себя решить, что совсем небольшие изменения не несут особой биологической ценности и рассчитывать выборку для бОльших эффектов.

Как вы думаете, возможен ли такой подход в научных исследованиях?

#product #analytics

BY Статистика и R в науке и аналитике




Share with your friend now:
group-telegram.com/stats_for_science/111

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Artem Kliuchnikov and his family fled Ukraine just days before the Russian invasion. Given the pro-privacy stance of the platform, it’s taken as a given that it’ll be used for a number of reasons, not all of them good. And Telegram has been attached to a fair few scandals related to terrorism, sexual exploitation and crime. Back in 2015, Vox described Telegram as “ISIS’ app of choice,” saying that the platform’s real use is the ability to use channels to distribute material to large groups at once. Telegram has acted to remove public channels affiliated with terrorism, but Pavel Durov reiterated that he had no business snooping on private conversations. This ability to mix the public and the private, as well as the ability to use bots to engage with users has proved to be problematic. In early 2021, a database selling phone numbers pulled from Facebook was selling numbers for $20 per lookup. Similarly, security researchers found a network of deepfake bots on the platform that were generating images of people submitted by users to create non-consensual imagery, some of which involved children. I want a secure messaging app, should I use Telegram? One thing that Telegram now offers to all users is the ability to “disappear” messages or set remote deletion deadlines. That enables users to have much more control over how long people can access what you’re sending them. Given that Russian law enforcement officials are reportedly (via Insider) stopping people in the street and demanding to read their text messages, this could be vital to protect individuals from reprisals.
from no


Telegram Статистика и R в науке и аналитике
FROM American