мне приходит в голову такое рассуждение: если v=v(x) — всюду ненулевое касательное поле на единичной сфере в R^d, то надо при каждом вещественном t рассмотреть отображение S^{d-1} -> S^{d-1}, x -> G(v(x)+t*x), где G(v) := v/|v|. Это отображение Гаусса для [нашего поля, к которому прибавлена нормаль к сфере длины t].
Они все гомотопны между собой; но при t>>0 получается отображение, близкое к тождественному, а при t<<0 — отображение, близкое к антиподальному. Они не могут быть гомотопны при нечётном d, потому что имеют разную степень. (Степень отображения можно определить гладко, через гомологии или через гомотопические группы)
Но где-то видел, что для d=3 можно обойтись без степени отображения для двумерных сфер, использовать только фундаментальную группу
мне приходит в голову такое рассуждение: если v=v(x) — всюду ненулевое касательное поле на единичной сфере в R^d, то надо при каждом вещественном t рассмотреть отображение S^{d-1} -> S^{d-1}, x -> G(v(x)+t*x), где G(v) := v/|v|. Это отображение Гаусса для [нашего поля, к которому прибавлена нормаль к сфере длины t].
Они все гомотопны между собой; но при t>>0 получается отображение, близкое к тождественному, а при t<<0 — отображение, близкое к антиподальному. Они не могут быть гомотопны при нечётном d, потому что имеют разную степень. (Степень отображения можно определить гладко, через гомологии или через гомотопические группы)
Но где-то видел, что для d=3 можно обойтись без степени отображения для двумерных сфер, использовать только фундаментальную группу
BY сладко стянул
Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260
The regulator said it has been undertaking several campaigns to educate the investors to be vigilant while taking investment decisions based on stock tips. Investors took profits on Friday while they could ahead of the weekend, explained Tom Essaye, founder of Sevens Report Research. Saturday and Sunday could easily bring unfortunate news on the war front—and traders would rather be able to sell any recent winnings at Friday’s earlier prices than wait for a potentially lower price at Monday’s open. Unlike Silicon Valley giants such as Facebook and Twitter, which run very public anti-disinformation programs, Brooking said: "Telegram is famously lax or absent in its content moderation policy." I want a secure messaging app, should I use Telegram? Telegram boasts 500 million users, who share information individually and in groups in relative security. But Telegram's use as a one-way broadcast channel — which followers can join but not reply to — means content from inauthentic accounts can easily reach large, captive and eager audiences.
from no