Telegram Group & Telegram Channel
Попалось на глаза аж октябрьское выступление Ноама Брауна из OpenAI, которое сейчас, пожалуй, стало только актуальней. Там недолго — 12 минут; очень полезно послушать.
Ноам напоминает, что для тех ИИ алгоритмов, которые использовались для побед в го или покере, была показана и доказана сильная зависимость времени, затрачиваемого на ответ, — и конечного результата. Еще создатели Alfa Go отмечали, что для обыгрывания топовых игроков, система должна размышлять над каждым ходом не менее 2 минут; если это время заметно сократить, то алгоритм начнет проигрывать отнюдь не только чемпионам.
Ноам утверждает, что похожая ситуация и с языковыми моделями и вспоминает Канемана с его системой-1 быстрых эвристик и системой-2 долгих рассуждений: первая выигрывает в оперативности, но нередко ошибается.
Тренируя модели за миллиард долларов, их создатели стремятся получить одновременно и хороший и быстрый ответ — что разумно, если модель будет в основном чатиться: люди не станут общаться с даже умным тормозом. Ответ модели в такой ситуации очень дешевый: на него не расходуются вычислительные мощности, тот самый компьют (да, пора привыкать к этому слову). Но если дать возможность модели вычислительно потрудиться в процессе ответа, то его качество резко возрастает, и несколько подрастает цена — растет и расход ресурсов.
Собственно, это рассказ о том, почему была придумана и в итоге выпущена рассуждающая o1. Но настоящий потенциал таких моделей — не в чатиках, а в помощи в решении научных и технических проблем. Там нет “разговорных” требований к скорости и цене ответа: качественный ответ на сложный научный вопрос стоит того, чтоб его подождать хоть минуты, хоть часы, чтоб платить за него даже и тысячи долларов.
И это означает, что меняется парадигма: от скейлинга только возможностей системы-1, разработчики переходят к скейлингу рассуждений в системе-2 — и это означает, что та самая “стена”, которой пугают некоторые эксперты, существует лишь в первой парадигме. На ближайшие годы понятно куда масштабироваться, ни во что не упираясь и не снижая темп новых достижений.
(вот прямо вспоминается, сколько лет скептики старательно и безуспешно хоронили закон Мура… 🙂 )

https://www.ted.com/talks/noam_brown_ai_won_t_plateau_if_we_give_it_time_to_think



group-telegram.com/techsparks/4865
Create:
Last Update:

Попалось на глаза аж октябрьское выступление Ноама Брауна из OpenAI, которое сейчас, пожалуй, стало только актуальней. Там недолго — 12 минут; очень полезно послушать.
Ноам напоминает, что для тех ИИ алгоритмов, которые использовались для побед в го или покере, была показана и доказана сильная зависимость времени, затрачиваемого на ответ, — и конечного результата. Еще создатели Alfa Go отмечали, что для обыгрывания топовых игроков, система должна размышлять над каждым ходом не менее 2 минут; если это время заметно сократить, то алгоритм начнет проигрывать отнюдь не только чемпионам.
Ноам утверждает, что похожая ситуация и с языковыми моделями и вспоминает Канемана с его системой-1 быстрых эвристик и системой-2 долгих рассуждений: первая выигрывает в оперативности, но нередко ошибается.
Тренируя модели за миллиард долларов, их создатели стремятся получить одновременно и хороший и быстрый ответ — что разумно, если модель будет в основном чатиться: люди не станут общаться с даже умным тормозом. Ответ модели в такой ситуации очень дешевый: на него не расходуются вычислительные мощности, тот самый компьют (да, пора привыкать к этому слову). Но если дать возможность модели вычислительно потрудиться в процессе ответа, то его качество резко возрастает, и несколько подрастает цена — растет и расход ресурсов.
Собственно, это рассказ о том, почему была придумана и в итоге выпущена рассуждающая o1. Но настоящий потенциал таких моделей — не в чатиках, а в помощи в решении научных и технических проблем. Там нет “разговорных” требований к скорости и цене ответа: качественный ответ на сложный научный вопрос стоит того, чтоб его подождать хоть минуты, хоть часы, чтоб платить за него даже и тысячи долларов.
И это означает, что меняется парадигма: от скейлинга только возможностей системы-1, разработчики переходят к скейлингу рассуждений в системе-2 — и это означает, что та самая “стена”, которой пугают некоторые эксперты, существует лишь в первой парадигме. На ближайшие годы понятно куда масштабироваться, ни во что не упираясь и не снижая темп новых достижений.
(вот прямо вспоминается, сколько лет скептики старательно и безуспешно хоронили закон Мура… 🙂 )

https://www.ted.com/talks/noam_brown_ai_won_t_plateau_if_we_give_it_time_to_think

BY TechSparks




Share with your friend now:
group-telegram.com/techsparks/4865

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Some privacy experts say Telegram is not secure enough The channel appears to be part of the broader information war that has developed following Russia's invasion of Ukraine. The Kremlin has paid Russian TikTok influencers to push propaganda, according to a Vice News investigation, while ProPublica found that fake Russian fact check videos had been viewed over a million times on Telegram. "He has kind of an old-school cyber-libertarian world view where technology is there to set you free," Maréchal said. Under the Sebi Act, the regulator has the power to carry out search and seizure of books, registers, documents including electronics and digital devices from any person associated with the securities market. Crude oil prices edged higher after tumbling on Thursday, when U.S. West Texas intermediate slid back below $110 per barrel after topping as much as $130 a barrel in recent sessions. Still, gas prices at the pump rose to fresh highs.
from no


Telegram TechSparks
FROM American