Telegram Group & Telegram Channel
Работа с динамическими именами столбцов в dplyr: sym(), syms() и оператор !!

Часто при работе с данными в R возникает необходимость обращаться к столбцам таблицы по их именам, которые могут передаваться как строки. Это может быть полезно, если имена столбцов не известны заранее или задаются динамически в функциях. В dplyr для таких задач существует механизм tidy evaluation, и одними из ключевых инструментов являются функции sym(), syms() и оператор !!.

Проблема:
Обычно в dplyr мы обращаемся к столбцам напрямую, как показано ниже:

library(dplyr)

data <- tibble(
Area = c('IT', 'Finance', NA),
Date = as.Date(c('2023-01-01', NA, '2023-03-15'))
)

# Фильтруем строки, где нет пропусков в столбцах 'Area' и 'Date'
filtered_data <- data %>%
filter(!is.na(Area), !is.na(Date))


Но что, если имена столбцов будут передаваться в виде строк, например через аргументы функции? Простое использование строк в filter() не сработает.

Решение: sym() и оператор !!
Функция sym() преобразует строку в символ (символ — это объект, который может быть интерпретирован как имя переменной), а оператор !! используется для развертывания этого символа в выражении. Давайте рассмотрим, как это работает:

library(dplyr)

# Функция для фильтрации данных на основе имен столбцов, переданных как строки
filter_data <- function(data, col_name1, col_name2) {
col1 <- sym(col_name1)
col2 <- sym(col_name2)

data %>%
filter(!is.na(!!col1), !is.na(!!col2))
}

# Пример данных
data <- tibble(
Area = c('IT', 'Finance', NA),
Date = as.Date(c('2023-01-01', NA, '2023-03-15'))
)

# Фильтруем данные, используя имена столбцов как строки
filtered_data <- filter_data(data, 'Area', 'Date')
print(filtered_data)


В этой функции:
sym(col_name1) и sym(col_name2) преобразуют строки в символы, которые затем могут использоваться в dplyr::filter().
Оператор !! разворачивает символ в выражении, позволяя использовать его как имя переменной в функции filter().

Работа с несколькими столбцами: syms()
Если вам нужно работать сразу с несколькими столбцами, то для преобразования списка строк в символы можно использовать функцию syms().

library(dplyr)

# Функция для фильтрации нескольких столбцов
filter_multiple <- function(data, col_names) {
cols <- syms(col_names)

data %>%
filter(across(all_of(col_names), ~ !is.na(.)))
}

# Пример данных
data <- tibble(
Area = c('IT', 'Finance', NA),
Date = as.Date(c('2023-01-01', NA, '2023-03-15')),
Amount = c(1000, 2000, NA)
)

# Фильтруем строки, где нет пропусков в нескольких столбцах
filtered_data <- filter_multiple(data, c('Area', 'Date', 'Amount'))
print(filtered_data)


Здесь:

syms(col_names) преобразует вектор строк в список символов.
across() вместе с all_of() позволяет удобно применить фильтр ко всем указанным столбцам.

————————————
Использование функций sym(), syms() и оператора !! — это мощный инструмент для написания гибкого и динамического кода в R. Он особенно полезен при работе с большими данными и пакетами вроде dplyr, когда имена столбцов не известны заранее или приходят из пользовательского ввода.

О подобных примерах рассказано в виньетке "Программирование с dplyr".

#заметки_по_R



group-telegram.com/R4marketing/1324
Create:
Last Update:

Работа с динамическими именами столбцов в dplyr: sym(), syms() и оператор !!

Часто при работе с данными в R возникает необходимость обращаться к столбцам таблицы по их именам, которые могут передаваться как строки. Это может быть полезно, если имена столбцов не известны заранее или задаются динамически в функциях. В dplyr для таких задач существует механизм tidy evaluation, и одними из ключевых инструментов являются функции sym(), syms() и оператор !!.

Проблема:
Обычно в dplyr мы обращаемся к столбцам напрямую, как показано ниже:

library(dplyr)

data <- tibble(
Area = c('IT', 'Finance', NA),
Date = as.Date(c('2023-01-01', NA, '2023-03-15'))
)

# Фильтруем строки, где нет пропусков в столбцах 'Area' и 'Date'
filtered_data <- data %>%
filter(!is.na(Area), !is.na(Date))


Но что, если имена столбцов будут передаваться в виде строк, например через аргументы функции? Простое использование строк в filter() не сработает.

Решение: sym() и оператор !!
Функция sym() преобразует строку в символ (символ — это объект, который может быть интерпретирован как имя переменной), а оператор !! используется для развертывания этого символа в выражении. Давайте рассмотрим, как это работает:

library(dplyr)

# Функция для фильтрации данных на основе имен столбцов, переданных как строки
filter_data <- function(data, col_name1, col_name2) {
col1 <- sym(col_name1)
col2 <- sym(col_name2)

data %>%
filter(!is.na(!!col1), !is.na(!!col2))
}

# Пример данных
data <- tibble(
Area = c('IT', 'Finance', NA),
Date = as.Date(c('2023-01-01', NA, '2023-03-15'))
)

# Фильтруем данные, используя имена столбцов как строки
filtered_data <- filter_data(data, 'Area', 'Date')
print(filtered_data)


В этой функции:
sym(col_name1) и sym(col_name2) преобразуют строки в символы, которые затем могут использоваться в dplyr::filter().
Оператор !! разворачивает символ в выражении, позволяя использовать его как имя переменной в функции filter().

Работа с несколькими столбцами: syms()
Если вам нужно работать сразу с несколькими столбцами, то для преобразования списка строк в символы можно использовать функцию syms().

library(dplyr)

# Функция для фильтрации нескольких столбцов
filter_multiple <- function(data, col_names) {
cols <- syms(col_names)

data %>%
filter(across(all_of(col_names), ~ !is.na(.)))
}

# Пример данных
data <- tibble(
Area = c('IT', 'Finance', NA),
Date = as.Date(c('2023-01-01', NA, '2023-03-15')),
Amount = c(1000, 2000, NA)
)

# Фильтруем строки, где нет пропусков в нескольких столбцах
filtered_data <- filter_multiple(data, c('Area', 'Date', 'Amount'))
print(filtered_data)


Здесь:

syms(col_names) преобразует вектор строк в список символов.
across() вместе с all_of() позволяет удобно применить фильтр ко всем указанным столбцам.

————————————
Использование функций sym(), syms() и оператора !! — это мощный инструмент для написания гибкого и динамического кода в R. Он особенно полезен при работе с большими данными и пакетами вроде dplyr, когда имена столбцов не известны заранее или приходят из пользовательского ввода.

О подобных примерах рассказано в виньетке "Программирование с dplyr".

#заметки_по_R

BY R4marketing | канал Алексея Селезнёва | Язык R




Share with your friend now:
group-telegram.com/R4marketing/1324

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The Dow Jones Industrial Average fell 230 points, or 0.7%. Meanwhile, the S&P 500 and the Nasdaq Composite dropped 1.3% and 2.2%, respectively. All three indexes began the day with gains before selling off. This provided opportunity to their linked entities to offload their shares at higher prices and make significant profits at the cost of unsuspecting retail investors. "Someone posing as a Ukrainian citizen just joins the chat and starts spreading misinformation, or gathers data, like the location of shelters," Tsekhanovska said, noting how false messages have urged Ukrainians to turn off their phones at a specific time of night, citing cybersafety. The picture was mixed overseas. Hong Kong’s Hang Seng Index fell 1.6%, under pressure from U.S. regulatory scrutiny on New York-listed Chinese companies. Stocks were more buoyant in Europe, where Frankfurt’s DAX surged 1.4%. Just days after Russia invaded Ukraine, Durov wrote that Telegram was "increasingly becoming a source of unverified information," and he worried about the app being used to "incite ethnic hatred."
from pl


Telegram R4marketing | канал Алексея Селезнёва | Язык R
FROM American