От меня не требовалось программировать для продакшена, а только улучшать работу отдела лингвистики. Мне казалось это легкой и недостаточно продвинутой работой, по сравнению с тем, что я делала в магистратуре и затем в аспирантуре, но я все равно многому научилась. Вот что это было.
Pandas. Я уже знала кое-что базовое про таблицы и pandas, и решила применить эти знания. Анализ ошибок распознавания и маршрутизации звонков происходил в экселе, вручную, что приводило к большому количеству опечаток, проблемам с кодировкой и тому подобное. Из текстовых логов я делала таблицы CSV, лингвисты напрямую открывали их в экселе, кодировка ломалась, и так каждый раз. Я посмотрела на все это и написала скрипты на питоне, которые читали эти таблицы, исправляли кодировку, считали статистику (точность, полноту и тд.) и показывали, в каких местах есть опечатки, неправильные колонки, пустые ячейки. Все, что можно было исправить автоматически, исправлялось, остальное просто выводилось на экран. Таким образом я быстро стала богиней таблиц. Pandas - это лучшее изобретение для обработки таблиц в питоне. Pandas + Spyder - это любовь и я не представляю, что может быть удобнее и стабильнее.
CLI (command line interface). Чтобы остальные лингвисты могли использовать эти скрипты, мне пришлось освоить написание интерфейсов для командной строки и библиотеку argparse.
Работа с файлами в питоне. При работе с логами требовалось копировать файлы, выбирать нужные в разных папках разной структуры, форматировать, переименовывать и удалять. Все это было сделано на баш-скриптах, и я написала что-то подобное, только на питоне. Что было намного более понятно и поддавалось контролю, в отличие от.
Я также научилась устанавливать и настраивать Nuance, если компании нужно было только распознавание речи, без звонков. Весь пользовательский интерфейс был через CLI. Мне пришлось освоить командную строку в виндоус и Red Hat, а также YAML. Я прошла курс по Нюансу, и у меня даже есть сертификат. Я сертифицированный устанавливатель Нюанса.
Я написала скрипты, чтобы считать word error rate для распознавания речи.
API Google Translate. Для создания корпуса на каталанском я предложила использовать перевод с испанского. Этот перевод сперва хотели поручать каталанскому офису, они же знают два языка, пусть переводят. Я говорю: ведь если мы переведем тексты автоматически, тем более что пара испанский-каталан несложная, а работники только проверят, что все правильно и где неправильно, исправят, это сократит время работы.
От меня не требовалось программировать для продакшена, а только улучшать работу отдела лингвистики. Мне казалось это легкой и недостаточно продвинутой работой, по сравнению с тем, что я делала в магистратуре и затем в аспирантуре, но я все равно многому научилась. Вот что это было.
Pandas. Я уже знала кое-что базовое про таблицы и pandas, и решила применить эти знания. Анализ ошибок распознавания и маршрутизации звонков происходил в экселе, вручную, что приводило к большому количеству опечаток, проблемам с кодировкой и тому подобное. Из текстовых логов я делала таблицы CSV, лингвисты напрямую открывали их в экселе, кодировка ломалась, и так каждый раз. Я посмотрела на все это и написала скрипты на питоне, которые читали эти таблицы, исправляли кодировку, считали статистику (точность, полноту и тд.) и показывали, в каких местах есть опечатки, неправильные колонки, пустые ячейки. Все, что можно было исправить автоматически, исправлялось, остальное просто выводилось на экран. Таким образом я быстро стала богиней таблиц. Pandas - это лучшее изобретение для обработки таблиц в питоне. Pandas + Spyder - это любовь и я не представляю, что может быть удобнее и стабильнее.
CLI (command line interface). Чтобы остальные лингвисты могли использовать эти скрипты, мне пришлось освоить написание интерфейсов для командной строки и библиотеку argparse.
Работа с файлами в питоне. При работе с логами требовалось копировать файлы, выбирать нужные в разных папках разной структуры, форматировать, переименовывать и удалять. Все это было сделано на баш-скриптах, и я написала что-то подобное, только на питоне. Что было намного более понятно и поддавалось контролю, в отличие от.
Я также научилась устанавливать и настраивать Nuance, если компании нужно было только распознавание речи, без звонков. Весь пользовательский интерфейс был через CLI. Мне пришлось освоить командную строку в виндоус и Red Hat, а также YAML. Я прошла курс по Нюансу, и у меня даже есть сертификат. Я сертифицированный устанавливатель Нюанса.
Я написала скрипты, чтобы считать word error rate для распознавания речи.
API Google Translate. Для создания корпуса на каталанском я предложила использовать перевод с испанского. Этот перевод сперва хотели поручать каталанскому офису, они же знают два языка, пусть переводят. Я говорю: ведь если мы переведем тексты автоматически, тем более что пара испанский-каталан несложная, а работники только проверят, что все правильно и где неправильно, исправят, это сократит время работы.
BY NLP Master
Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260
"Like the bombing of the maternity ward in Mariupol," he said, "Even before it hits the news, you see the videos on the Telegram channels." This ability to mix the public and the private, as well as the ability to use bots to engage with users has proved to be problematic. In early 2021, a database selling phone numbers pulled from Facebook was selling numbers for $20 per lookup. Similarly, security researchers found a network of deepfake bots on the platform that were generating images of people submitted by users to create non-consensual imagery, some of which involved children. He adds: "Telegram has become my primary news source." Asked about its stance on disinformation, Telegram spokesperson Remi Vaughn told AFP: "As noted by our CEO, the sheer volume of information being shared on channels makes it extremely difficult to verify, so it's important that users double-check what they read." "The argument from Telegram is, 'You should trust us because we tell you that we're trustworthy,'" Maréchal said. "It's really in the eye of the beholder whether that's something you want to buy into."
from pl