Telegram Group & Telegram Channel
MobileLLM: Optimizing Sub-billion Parameter Language Models for On-Device Use Cases

Юзать LLM хотят все, но инференс в облаке стоит конских денег. Но есть простое решение - давайте юзеры будут запускать LLM у себя, а не в облаке. Однако не стоит забывать – большинство пользователей интернета владеют лишь телефоном. Оперативной памяти там не так уж и много - у iPhone это 6 гигов, у большинства андроид флагманов до 12, так что нужно оптимизировать параметры, но и не забывать про перформанс. Авторам пейпера удалось заметно улучшить качество инференса на телефонах, без потерь в перформансе.

Как это вышло?

Авторы выяснили, что масштабирование модели вглубь при таком же количестве параметров работает лучше чем при масштабировании модели вширь. Таким образом модель на 125 миллионов параметров имеет 30 слоёв (у GPT-2, Bert и вообще всего в такой весовой категории обычно 12).
Традиционный для "эффективных" моделей шеринг входного и выходного слоя эмбеддингов.
Завезли Group Query Attention, который раньше в таких моделях не использовался.
Убедились что все слои влезают в кэш телефонов, потому что оперативка значительно медленнее.

Самая интересная часть - layer sharing, так что её разберём поподробнее. Идея в том, чтобы использовать один и тот же слой несколько раз, и таким образом улучшить перформанс. Попробовали несколько стратегий:

Повторять слои незамедлительно - то есть слой компьютит что-то, а потом его вывод кормится в него же.
Повторять все слои в том же порядке - по сути моделька запускается два раза на одном и том же инпуте.
Сначала считать слои в обычном порядке, а потом задом наперёд.

Лучше всех показал себя второй способ, но выбрали первый, потому что он заметно быстрее работает (не нужно грузить слой в кэш несколько раз).

В итоге вышло хорошо так улучшить результаты, без раздутия количества параметров или времени выполнения модели. Итоговая модель выдаёт более чем 50 токенов в секунду на обычном телефоне. Статья февральская, но код выложили только сейчас. Весов нет.

Пейпер
Код

@ai_newz



group-telegram.com/ai_newz/3003
Create:
Last Update:

MobileLLM: Optimizing Sub-billion Parameter Language Models for On-Device Use Cases

Юзать LLM хотят все, но инференс в облаке стоит конских денег. Но есть простое решение - давайте юзеры будут запускать LLM у себя, а не в облаке. Однако не стоит забывать – большинство пользователей интернета владеют лишь телефоном. Оперативной памяти там не так уж и много - у iPhone это 6 гигов, у большинства андроид флагманов до 12, так что нужно оптимизировать параметры, но и не забывать про перформанс. Авторам пейпера удалось заметно улучшить качество инференса на телефонах, без потерь в перформансе.

Как это вышло?

Авторы выяснили, что масштабирование модели вглубь при таком же количестве параметров работает лучше чем при масштабировании модели вширь. Таким образом модель на 125 миллионов параметров имеет 30 слоёв (у GPT-2, Bert и вообще всего в такой весовой категории обычно 12).
Традиционный для "эффективных" моделей шеринг входного и выходного слоя эмбеддингов.
Завезли Group Query Attention, который раньше в таких моделях не использовался.
Убедились что все слои влезают в кэш телефонов, потому что оперативка значительно медленнее.

Самая интересная часть - layer sharing, так что её разберём поподробнее. Идея в том, чтобы использовать один и тот же слой несколько раз, и таким образом улучшить перформанс. Попробовали несколько стратегий:

Повторять слои незамедлительно - то есть слой компьютит что-то, а потом его вывод кормится в него же.
Повторять все слои в том же порядке - по сути моделька запускается два раза на одном и том же инпуте.
Сначала считать слои в обычном порядке, а потом задом наперёд.

Лучше всех показал себя второй способ, но выбрали первый, потому что он заметно быстрее работает (не нужно грузить слой в кэш несколько раз).

В итоге вышло хорошо так улучшить результаты, без раздутия количества параметров или времени выполнения модели. Итоговая модель выдаёт более чем 50 токенов в секунду на обычном телефоне. Статья февральская, но код выложили только сейчас. Весов нет.

Пейпер
Код

@ai_newz

BY эйай ньюз





Share with your friend now:
group-telegram.com/ai_newz/3003

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Oh no. There’s a certain degree of myth-making around what exactly went on, so take everything that follows lightly. Telegram was originally launched as a side project by the Durov brothers, with Nikolai handling the coding and Pavel as CEO, while both were at VK. Telegram has become more interventionist over time, and has steadily increased its efforts to shut down these accounts. But this has also meant that the company has also engaged with lawmakers more generally, although it maintains that it doesn’t do so willingly. For instance, in September 2021, Telegram reportedly blocked a chat bot in support of (Putin critic) Alexei Navalny during Russia’s most recent parliamentary elections. Pavel Durov was quoted at the time saying that the company was obliged to follow a “legitimate” law of the land. He added that as Apple and Google both follow the law, to violate it would give both platforms a reason to boot the messenger from its stores. WhatsApp, a rival messaging platform, introduced some measures to counter disinformation when Covid-19 was first sweeping the world. Continuing its crackdown against entities allegedly involved in a front-running scam using messaging app Telegram, Sebi on Thursday carried out search and seizure operations at the premises of eight entities in multiple locations across the country. The Securities and Exchange Board of India (Sebi) had carried out a similar exercise in 2017 in a matter related to circulation of messages through WhatsApp.
from pl


Telegram эйай ньюз
FROM American