Notice: file_put_contents(): Write of 1935 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50

Warning: file_put_contents(): Only 8192 of 10127 bytes written, possibly out of free disk space in /var/www/group-telegram/post.php on line 50
Анси логика | Telegram Webview: ansi_logic/103 -
Telegram Group & Telegram Channel
Перекроить круг в квадрат пытались ещё древние греки, и только спустя сотни лет выяснилось, что циркулем и линейкой сделать это невозможно (если коротко, то причина в трансцендентности числа пи). "Тогда ладно" - сказал Тарский и поставил такой вопрос: можно ли порезать круг на конечное число кусочков и собрать из них квадрат? Не спешите давать отрицательный ответ на этот вопрос, потому что:
- теорема Бойяи-Гервина утверждает, что если взять любые многоугольники равной площади, то один из них можно порезать на конечное число кусочков и собрать другой;
- можно разрезать круг на 2 (всего 2!) кусочка, один из них гомотетично растянуть и собрать квадрат (очень красивая задача, на мой взгляд. впрочем, этот же трюк работает с любыми 2 подмножествами плоскости, имеющими непустую внутренность);
- парадокс Банаха-Тарского: можно разрезать шар на 5 кусочков и собрать два таких же шара. Хотя аналогичная конструкция на плоскости невозможна (квадрат должен быть той же площади, что и круг), это наводит на мысль, ну мало ли что бывает.

Если разрешить резать только по прямым и дугам окружностей, то перекроить круг в квадрат не выйдет (это почти очевидно). Разрешаем большее: можно резать по любым "хорошим" (хороший значит жордановый) кривым. Тоже не получится, доказать уже сильно сложнее. Если приплести аксиому выбора, то порезать удастся на примерно 10^40 кусков. Неконструктивно, но порезали! Вот обзорная статья 2003 года про это всё.

Удивительно, но в 2022 году оказалось, что можно порезать круг, чтобы собрать потом квадрат, вполне себе конструктивно на БОРЕЛЕВСКИЕ КУСКИ!!! (А если кусок борелевский, значит, он измеримый.) Вот это построение. Оч сложно, но какова красота 🥰



group-telegram.com/ansi_logic/103
Create:
Last Update:

Перекроить круг в квадрат пытались ещё древние греки, и только спустя сотни лет выяснилось, что циркулем и линейкой сделать это невозможно (если коротко, то причина в трансцендентности числа пи). "Тогда ладно" - сказал Тарский и поставил такой вопрос: можно ли порезать круг на конечное число кусочков и собрать из них квадрат? Не спешите давать отрицательный ответ на этот вопрос, потому что:
- теорема Бойяи-Гервина утверждает, что если взять любые многоугольники равной площади, то один из них можно порезать на конечное число кусочков и собрать другой;
- можно разрезать круг на 2 (всего 2!) кусочка, один из них гомотетично растянуть и собрать квадрат (очень красивая задача, на мой взгляд. впрочем, этот же трюк работает с любыми 2 подмножествами плоскости, имеющими непустую внутренность);
- парадокс Банаха-Тарского: можно разрезать шар на 5 кусочков и собрать два таких же шара. Хотя аналогичная конструкция на плоскости невозможна (квадрат должен быть той же площади, что и круг), это наводит на мысль, ну мало ли что бывает.

Если разрешить резать только по прямым и дугам окружностей, то перекроить круг в квадрат не выйдет (это почти очевидно). Разрешаем большее: можно резать по любым "хорошим" (хороший значит жордановый) кривым. Тоже не получится, доказать уже сильно сложнее. Если приплести аксиому выбора, то порезать удастся на примерно 10^40 кусков. Неконструктивно, но порезали! Вот обзорная статья 2003 года про это всё.

Удивительно, но в 2022 году оказалось, что можно порезать круг, чтобы собрать потом квадрат, вполне себе конструктивно на БОРЕЛЕВСКИЕ КУСКИ!!! (А если кусок борелевский, значит, он измеримый.) Вот это построение. Оч сложно, но какова красота 🥰

BY Анси логика


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/ansi_logic/103

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Ukrainian President Volodymyr Zelensky said in a video message on Tuesday that Ukrainian forces "destroy the invaders wherever we can." Despite Telegram's origins, its approach to users' security has privacy advocates worried. Unlike Silicon Valley giants such as Facebook and Twitter, which run very public anti-disinformation programs, Brooking said: "Telegram is famously lax or absent in its content moderation policy." Although some channels have been removed, the curation process is considered opaque and insufficient by analysts. At its heart, Telegram is little more than a messaging app like WhatsApp or Signal. But it also offers open channels that enable a single user, or a group of users, to communicate with large numbers in a method similar to a Twitter account. This has proven to be both a blessing and a curse for Telegram and its users, since these channels can be used for both good and ill. Right now, as Wired reports, the app is a key way for Ukrainians to receive updates from the government during the invasion.
from pl


Telegram Анси логика
FROM American