Notice: file_put_contents(): Write of 2914 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50

Warning: file_put_contents(): Only 8192 of 11106 bytes written, possibly out of free disk space in /var/www/group-telegram/post.php on line 50
commit history | Telegram Webview: c0mmit/41 -
Telegram Group & Telegram Channel
Антропоморфизация больших языковых моделей

Не очень люблю говорить в компаниях про LLMs (Large Language Models: GPT, ChatGPT, LaMDA ...), потому что почти сразу тезис "скоро нейронные сети обретут сознание и всех поработят" становится основным. Я в таких случаях, кратко рассказываю как устроены модели. О том, что генеративные модели по принципу работают как автодополнение на телефоне. О том, что сети показали много текстов и во время обучения задача была в предсказании следующего слова при условии предыдущих. И о том, что обретение сознания не совсем верный тезис в подобном контексте.

Однако, в медиа постоянно выходят статьи с заголовками типа:
1. The Google engineer who thinks the company’s AI has come to life
2. 'I want to be alive': Has Microsoft's AI chatbot become sentient?

Давно искал что-то осмысленное про то, как люди наделяют человеческими свойствами языковые модели. И вот мне на глаза попалась статья Talking About Large Language Models от профессора Murray Shanahan из Imperial College

Ключевые тезисы такие:

1. Основной принцип работы LLM: генерация статистически вероятных продолжений последовательностей слов.
2. Многие задачи, для решения которых вроде бы нужен разум человека, можно свести к задаче предсказания следующего токена (слова).
3. Люди часто прибегают к антропормфизации (очеловечиванию) разных объектов для упрощения сложных процессов. (“мой телефон думает, что мы в другом месте.”) Это называется Intentional Stance.
4. Исследователи в своих статьях активно используют слова "знает", "верит", "думает" по отношению к LLM, подразумевая конкретные процессы вычислений.
5. Иногда видя слова "знает", "верит", "думает" люди могут начать ложно ожидать большего поведения, чем такие модели имеют.

В статье мне понравилось, что последовательно разбираются аргументы почему эти слова не очень корректно использовать в привычном их значении даже если модели могут:
• отвечать на вопросы которых не было в трейне
• ходить в другие системы
• отвечать по данным другой модальности (например, изобржаниям)
• выполнять задачи в реальном мире с помощью манипуляторов

Кому лень читать всю статью, сделал более подробный пересказ.
https://telegra.ph/Konspekt-stati-Talking-About-Large-Language-Models-02-19



group-telegram.com/c0mmit/41
Create:
Last Update:

Антропоморфизация больших языковых моделей

Не очень люблю говорить в компаниях про LLMs (Large Language Models: GPT, ChatGPT, LaMDA ...), потому что почти сразу тезис "скоро нейронные сети обретут сознание и всех поработят" становится основным. Я в таких случаях, кратко рассказываю как устроены модели. О том, что генеративные модели по принципу работают как автодополнение на телефоне. О том, что сети показали много текстов и во время обучения задача была в предсказании следующего слова при условии предыдущих. И о том, что обретение сознания не совсем верный тезис в подобном контексте.

Однако, в медиа постоянно выходят статьи с заголовками типа:
1. The Google engineer who thinks the company’s AI has come to life
2. 'I want to be alive': Has Microsoft's AI chatbot become sentient?

Давно искал что-то осмысленное про то, как люди наделяют человеческими свойствами языковые модели. И вот мне на глаза попалась статья Talking About Large Language Models от профессора Murray Shanahan из Imperial College

Ключевые тезисы такие:

1. Основной принцип работы LLM: генерация статистически вероятных продолжений последовательностей слов.
2. Многие задачи, для решения которых вроде бы нужен разум человека, можно свести к задаче предсказания следующего токена (слова).
3. Люди часто прибегают к антропормфизации (очеловечиванию) разных объектов для упрощения сложных процессов. (“мой телефон думает, что мы в другом месте.”) Это называется Intentional Stance.
4. Исследователи в своих статьях активно используют слова "знает", "верит", "думает" по отношению к LLM, подразумевая конкретные процессы вычислений.
5. Иногда видя слова "знает", "верит", "думает" люди могут начать ложно ожидать большего поведения, чем такие модели имеют.

В статье мне понравилось, что последовательно разбираются аргументы почему эти слова не очень корректно использовать в привычном их значении даже если модели могут:
• отвечать на вопросы которых не было в трейне
• ходить в другие системы
• отвечать по данным другой модальности (например, изобржаниям)
• выполнять задачи в реальном мире с помощью манипуляторов

Кому лень читать всю статью, сделал более подробный пересказ.
https://telegra.ph/Konspekt-stati-Talking-About-Large-Language-Models-02-19

BY commit history


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/c0mmit/41

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

As a result, the pandemic saw many newcomers to Telegram, including prominent anti-vaccine activists who used the app's hands-off approach to share false information on shots, a study from the Institute for Strategic Dialogue shows. "We're seeing really dramatic moves, and it's all really tied to Ukraine right now, and in a secondary way, in terms of interest rates," Octavio Marenzi, CEO of Opimas, told Yahoo Finance Live on Thursday. "This war in Ukraine is going to give the Fed the ammunition, the cover that it needs, to not raise interest rates too quickly. And I think Jay Powell is a very tepid sort of inflation fighter and he's not going to do as much as he needs to do to get that under control. And this seems like an excuse to kick the can further down the road still and not do too much too soon." Under the Sebi Act, the regulator has the power to carry out search and seizure of books, registers, documents including electronics and digital devices from any person associated with the securities market. Ukrainian President Volodymyr Zelensky said in a video message on Tuesday that Ukrainian forces "destroy the invaders wherever we can." Groups are also not fully encrypted, end-to-end. This includes private groups. Private groups cannot be seen by other Telegram users, but Telegram itself can see the groups and all of the communications that you have in them. All of the same risks and warnings about channels can be applied to groups.
from pl


Telegram commit history
FROM American