Как разложить F:=X³+Y³+Z³-3XYZ на множители? Вот несколько возможных подходов.
1) Если поверить, что это возможно, то один из множителей линейный. Проверим, делится ли это выражение на симметричный линейный множитель, X+Y+Z. Ну, если X+Y+Z=0, то Z=-(X+Y) и X³+Y³+Z³=X³+Y³-(X+Y)³=-3X²Y-3XY²=-3XY(X+Y)=3XYZ. То есть X³+Y³+Z³-3XYZ=0 (mod X+Y+Z). Дальше можно разделить F на X+Y+Z в столбик просто.
2) Насколько X³+Y³+Z³ отличается от (X+Y+Z)³? X³+Y³+Z³=(X+Y+Z)³-3(X+Y+Z)(XY+YZ+ZX)+3XYZ (можно сказать, что мы выразили левую часть через элементарные симметрические многочлены). Видим, что F=(X+Y+Z)((X+Y+Z)²-3(XY+YZ+ZX))=(X+Y+Z)(X²+Y²+Z²-XY-YZ-ZX).
Дальше на этом пути можно пытаться выразить суммы n-х степеней через элементарные симметрические (“формулы Ньютона”).
3) F — определитель матрицы |X Y Z| |Z X Y| |Y Z X| Если прибавить к первой строке две остальные, то видно, что он делится на (X+Y+Z). Оставшийся определитель легко посчитать, но можно вместо этого заметить, что по аналогичной причине определитель делится на (X+wY+w²Z) и (X+w²Y+wZ), где w — кубический корень из 1.
Это вычисление несложно обобщить на определитель F_n матрицы X_{i-j mod n}. Но на этом история не заканчивается, скорее только начинается. И это история про Фробениуса и теорию представлений конечных групп — можно посмотреть по этому поводу текст K.Conrad’а, https://kconrad.math.uconn.edu/articles/groupdet.pdf
Как разложить F:=X³+Y³+Z³-3XYZ на множители? Вот несколько возможных подходов.
1) Если поверить, что это возможно, то один из множителей линейный. Проверим, делится ли это выражение на симметричный линейный множитель, X+Y+Z. Ну, если X+Y+Z=0, то Z=-(X+Y) и X³+Y³+Z³=X³+Y³-(X+Y)³=-3X²Y-3XY²=-3XY(X+Y)=3XYZ. То есть X³+Y³+Z³-3XYZ=0 (mod X+Y+Z). Дальше можно разделить F на X+Y+Z в столбик просто.
2) Насколько X³+Y³+Z³ отличается от (X+Y+Z)³? X³+Y³+Z³=(X+Y+Z)³-3(X+Y+Z)(XY+YZ+ZX)+3XYZ (можно сказать, что мы выразили левую часть через элементарные симметрические многочлены). Видим, что F=(X+Y+Z)((X+Y+Z)²-3(XY+YZ+ZX))=(X+Y+Z)(X²+Y²+Z²-XY-YZ-ZX).
Дальше на этом пути можно пытаться выразить суммы n-х степеней через элементарные симметрические (“формулы Ньютона”).
3) F — определитель матрицы |X Y Z| |Z X Y| |Y Z X| Если прибавить к первой строке две остальные, то видно, что он делится на (X+Y+Z). Оставшийся определитель легко посчитать, но можно вместо этого заметить, что по аналогичной причине определитель делится на (X+wY+w²Z) и (X+w²Y+wZ), где w — кубический корень из 1.
Это вычисление несложно обобщить на определитель F_n матрицы X_{i-j mod n}. Но на этом история не заканчивается, скорее только начинается. И это история про Фробениуса и теорию представлений конечных групп — можно посмотреть по этому поводу текст K.Conrad’а, https://kconrad.math.uconn.edu/articles/groupdet.pdf
BY Непрерывное математическое образование
Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260
"And that set off kind of a battle royale for control of the platform that Durov eventually lost," said Nathalie Maréchal of the Washington advocacy group Ranking Digital Rights. "There are several million Russians who can lift their head up from propaganda and try to look for other sources, and I'd say that most look for it on Telegram," he said. In view of this, the regulator has cautioned investors not to rely on such investment tips / advice received through social media platforms. It has also said investors should exercise utmost caution while taking investment decisions while dealing in the securities market. The regulator said it had received information that messages containing stock tips and other investment advice with respect to selected listed companies are being widely circulated through websites and social media platforms such as Telegram, Facebook, WhatsApp and Instagram. In this regard, Sebi collaborated with the Telecom Regulatory Authority of India (TRAI) to reduce the vulnerability of the securities market to manipulation through misuse of mass communication medium like bulk SMS.
from pl