Telegram Group & Telegram Channel
Google релизнули Alpha Geometry 2: модель решает задачи по геометрии на уровне золотого медалиста Международной Математической Олимпиады

Первая версия Alpha Geometry вышла практически ровно год назад, и относительно нее новая версия сильно прокачалась: если предшественница решала 54% всех задач по геометрии с IMO 2000-2024, то AG2 справляется с 84%. Это, если что, на 84% больше, чем результат o1 👽

При этом AG2 не совсем нейросеть. Это нейро-символьная система. То есть AG2 объединяет в себе и LLM, и символьные строгие методы для вычислений и доказательств. В общих чертах AG2 потрошится на три основных составляющих:

1. Зафайнтюненная Gemini, которой скормили 300 млн теорем. Модель анализирует текст задачи и диаграммы и как бы интуитивно намечает решение: подсказывает, какие свойства фигур могут быть полезны, какие теоремы могут пригодиться и так далее. Она также служит своеобразным энкодером и формализует текст задачи в доменный язык, который умеет воспринимать символьный модуль.

2. Символьный движок DDAR2, в который сгружаются все результаты Gemini. Он берет на себя доказательства по строгим правилам геометрии и проверку и расширение предложенных LM решений с помощью дедукции. В новый DDAR добавили поддержку сложных геометрических конструкций, а также умение работать с "двойными" точками (такие возникают в куче примеров, наверное все помнят со школы задачи вида "докажите, что такая-то точка пересечения лежит на такой-то окружности").

А еще по сравнению с DDAR1 DDAR2 сильно ускорили с помощью C++ реализации и оптимизированного перебора вариантов решений. Раньше все работало на брутфорсе, а сейчас алгоритм переделали и сложность уменьшилась с 𝑂(𝑁⁸) до 𝑂(𝑁³), что увеличило скорость решения в 300 раз!

3. Ну и финальное: деревья поиска SKEST. Это как раз та самая оптимизация. Классические деревья предлагают как бы один шаг решения за раз. А в SKEST мы пробуем несколько вершин разом: это присходит за счет параллельного запуска нескольких деревьев, которые могут делиться между собой найденными стратегиями.

Плюсом ко всему, Alpha Geometry 2 даже умеет автоматически строить к своим решениям рисунки. К сожалению, демо пока не выложили, зато доступна статья.
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/data_secrets/6109
Create:
Last Update:

Google релизнули Alpha Geometry 2: модель решает задачи по геометрии на уровне золотого медалиста Международной Математической Олимпиады

Первая версия Alpha Geometry вышла практически ровно год назад, и относительно нее новая версия сильно прокачалась: если предшественница решала 54% всех задач по геометрии с IMO 2000-2024, то AG2 справляется с 84%. Это, если что, на 84% больше, чем результат o1 👽

При этом AG2 не совсем нейросеть. Это нейро-символьная система. То есть AG2 объединяет в себе и LLM, и символьные строгие методы для вычислений и доказательств. В общих чертах AG2 потрошится на три основных составляющих:

1. Зафайнтюненная Gemini, которой скормили 300 млн теорем. Модель анализирует текст задачи и диаграммы и как бы интуитивно намечает решение: подсказывает, какие свойства фигур могут быть полезны, какие теоремы могут пригодиться и так далее. Она также служит своеобразным энкодером и формализует текст задачи в доменный язык, который умеет воспринимать символьный модуль.

2. Символьный движок DDAR2, в который сгружаются все результаты Gemini. Он берет на себя доказательства по строгим правилам геометрии и проверку и расширение предложенных LM решений с помощью дедукции. В новый DDAR добавили поддержку сложных геометрических конструкций, а также умение работать с "двойными" точками (такие возникают в куче примеров, наверное все помнят со школы задачи вида "докажите, что такая-то точка пересечения лежит на такой-то окружности").

А еще по сравнению с DDAR1 DDAR2 сильно ускорили с помощью C++ реализации и оптимизированного перебора вариантов решений. Раньше все работало на брутфорсе, а сейчас алгоритм переделали и сложность уменьшилась с 𝑂(𝑁⁸) до 𝑂(𝑁³), что увеличило скорость решения в 300 раз!

3. Ну и финальное: деревья поиска SKEST. Это как раз та самая оптимизация. Классические деревья предлагают как бы один шаг решения за раз. А в SKEST мы пробуем несколько вершин разом: это присходит за счет параллельного запуска нескольких деревьев, которые могут делиться между собой найденными стратегиями.

Плюсом ко всему, Alpha Geometry 2 даже умеет автоматически строить к своим решениям рисунки. К сожалению, демо пока не выложили, зато доступна статья.

BY Data Secrets








Share with your friend now:
group-telegram.com/data_secrets/6109

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Multiple pro-Kremlin media figures circulated the post's false claims, including prominent Russian journalist Vladimir Soloviev and the state-controlled Russian outlet RT, according to the DFR Lab's report. Telegram was founded in 2013 by two Russian brothers, Nikolai and Pavel Durov. The original Telegram channel has expanded into a web of accounts for different locations, including specific pages made for individual Russian cities. There's also an English-language website, which states it is owned by the people who run the Telegram channels. In a statement, the regulator said the search and seizure operation was carried out against seven individuals and one corporate entity at multiple locations in Ahmedabad and Bhavnagar in Gujarat, Neemuch in Madhya Pradesh, Delhi, and Mumbai. Perpetrators of these scams will create a public group on Telegram to promote these investment packages that are usually accompanied by fake testimonies and sometimes advertised as being Shariah-compliant. Interested investors will be asked to directly message the representatives to begin investing in the various investment packages offered.
from pl


Telegram Data Secrets
FROM American