Telegram Group & Telegram Channel
Пельменная математика.

Размышлял я тут по академической надобности об энтропии и ёмкости пространств. И оказался в одном неформальном, алкогольном и, при том, весьма дружелюбном пространстве, на тематическом вечере, посвящённом лепке пельменей из лося. И внезапно сформулировалась задача вполне математическая, но при этом в завлекательно гастрономическом виде.

Итак.

Дана плоская тарелка. Какое максимальное количество одинаковых пельменей можно на неё положить в один слой так, чтобы они не сваливались с тарелки?

Несколько пояснений. Форма тарелки, строго говоря, может быть любой (ну и многомерной, конечно, тоже — лишь бы была ограниченной). Условие «не сваливаться» с тарелки вместе с требованием быть плоской значит следующее: центр пельменя должен находиться внутри тарелки.

Формальная постановка задачи такая: каково максимальное число не пересекающихся шаров данного радиуса можно расположить так, чтобы их центры находились внутри данной области? Собственно говоря, это число и называется ёмкостью области (ну, ёмкостью тарелки).

Аналогично можно поставить вопрос о минимально необходимом количестве пельменей, для того, чтобы полностью скрыть тарелку.

Математически, это значит, что мы хотим узнать минимальное число (возможно пересекающихся) шаров, объединение которых полностью содержит в себе данную область. Это число называют энтропией области.

В случае обычной круглой тарелки (плоской, как в сервизе), я думаю, что этот вопрос имеет ответом гексагональную упаковку. В целом, для сферических областей при достаточно маленьких (относительно тарелки) радиусах пельменей эта задача эквивалентна обычной задаче об упаковке.

Эта задача в общем случае не решена (и, вероятно, никогда не будет). При этом задача важная и ей довольно много занимаются. К примеру в случае размерностей 8 и 24, задачу об упаковке в 2016 году решила Марина Вязовская, за что получила в 2022 Филдсовскую медаль (и кучу других премий).

С энтропией и ёмкостью, особенно для произвольных областей, дела обстоят ещё сложнее. Кое-что можно на русском языке понять из древней статьи В.М. Тихомирова и А.Н. Колмогорова, и из статей, который на неё ссылаются (на матнете их довольно много). Кстати, в помянутой статье есть довольно примечательные отсылки на связь с теорией информации (например, с теоремой Котельникова, она же теорема Найквиста) и на связь с кодами, исправляющими ошибки.

Ну, а в моих «грубых делах» энтропия и ёмкость оказываются важным инструментом для определения роста пространства. И мне, к примеру, оказывается важным в основном сам факт конечности и очень грубые оценки. Но об этом как-нибудь в другой раз.

Ну, а что касается пельменей… Надеюсь, что на мою тарелку положат пельменей никак не меньше числа энтропии. И вообще, ответственно заявляю, что в барах я делом занимаюсь!

UPD: про прогресс задачи об упаковке видео подсказали.
#научпоп



group-telegram.com/forodirchNEWS/2873
Create:
Last Update:

Пельменная математика.

Размышлял я тут по академической надобности об энтропии и ёмкости пространств. И оказался в одном неформальном, алкогольном и, при том, весьма дружелюбном пространстве, на тематическом вечере, посвящённом лепке пельменей из лося. И внезапно сформулировалась задача вполне математическая, но при этом в завлекательно гастрономическом виде.

Итак.

Дана плоская тарелка. Какое максимальное количество одинаковых пельменей можно на неё положить в один слой так, чтобы они не сваливались с тарелки?

Несколько пояснений. Форма тарелки, строго говоря, может быть любой (ну и многомерной, конечно, тоже — лишь бы была ограниченной). Условие «не сваливаться» с тарелки вместе с требованием быть плоской значит следующее: центр пельменя должен находиться внутри тарелки.

Формальная постановка задачи такая: каково максимальное число не пересекающихся шаров данного радиуса можно расположить так, чтобы их центры находились внутри данной области? Собственно говоря, это число и называется ёмкостью области (ну, ёмкостью тарелки).

Аналогично можно поставить вопрос о минимально необходимом количестве пельменей, для того, чтобы полностью скрыть тарелку.

Математически, это значит, что мы хотим узнать минимальное число (возможно пересекающихся) шаров, объединение которых полностью содержит в себе данную область. Это число называют энтропией области.

В случае обычной круглой тарелки (плоской, как в сервизе), я думаю, что этот вопрос имеет ответом гексагональную упаковку. В целом, для сферических областей при достаточно маленьких (относительно тарелки) радиусах пельменей эта задача эквивалентна обычной задаче об упаковке.

Эта задача в общем случае не решена (и, вероятно, никогда не будет). При этом задача важная и ей довольно много занимаются. К примеру в случае размерностей 8 и 24, задачу об упаковке в 2016 году решила Марина Вязовская, за что получила в 2022 Филдсовскую медаль (и кучу других премий).

С энтропией и ёмкостью, особенно для произвольных областей, дела обстоят ещё сложнее. Кое-что можно на русском языке понять из древней статьи В.М. Тихомирова и А.Н. Колмогорова, и из статей, который на неё ссылаются (на матнете их довольно много). Кстати, в помянутой статье есть довольно примечательные отсылки на связь с теорией информации (например, с теоремой Котельникова, она же теорема Найквиста) и на связь с кодами, исправляющими ошибки.

Ну, а в моих «грубых делах» энтропия и ёмкость оказываются важным инструментом для определения роста пространства. И мне, к примеру, оказывается важным в основном сам факт конечности и очень грубые оценки. Но об этом как-нибудь в другой раз.

Ну, а что касается пельменей… Надеюсь, что на мою тарелку положат пельменей никак не меньше числа энтропии. И вообще, ответственно заявляю, что в барах я делом занимаюсь!

UPD: про прогресс задачи об упаковке видео подсказали.
#научпоп

BY Кофейный теоретик




Share with your friend now:
group-telegram.com/forodirchNEWS/2873

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The Security Service of Ukraine said in a tweet that it was able to effectively target Russian convoys near Kyiv because of messages sent to an official Telegram bot account called "STOP Russian War." Channels are not fully encrypted, end-to-end. All communications on a Telegram channel can be seen by anyone on the channel and are also visible to Telegram. Telegram may be asked by a government to hand over the communications from a channel. Telegram has a history of standing up to Russian government requests for data, but how comfortable you are relying on that history to predict future behavior is up to you. Because Telegram has this data, it may also be stolen by hackers or leaked by an internal employee. On February 27th, Durov posted that Channels were becoming a source of unverified information and that the company lacks the ability to check on their veracity. He urged users to be mistrustful of the things shared on Channels, and initially threatened to block the feature in the countries involved for the length of the war, saying that he didn’t want Telegram to be used to aggravate conflict or incite ethnic hatred. He did, however, walk back this plan when it became clear that they had also become a vital communications tool for Ukrainian officials and citizens to help coordinate their resistance and evacuations. "He has kind of an old-school cyber-libertarian world view where technology is there to set you free," Maréchal said. In a statement, the regulator said the search and seizure operation was carried out against seven individuals and one corporate entity at multiple locations in Ahmedabad and Bhavnagar in Gujarat, Neemuch in Madhya Pradesh, Delhi, and Mumbai.
from pl


Telegram Кофейный теоретик
FROM American