Telegram Group & Telegram Channel
Сегодня обсудим процедуру обучения DeepSeek-V3. Архитектура и технические решения были разобраны в предыдущем посте (https://www.group-telegram.com/pl/gonzo_ML.com/3292).

На всякий случай ещё раз явно проговорю, это не DeepSeek-R1, которая reasoning по типу o1/o3, это базовая чат-модель, на которой R1 была обучена. Не уверен, что буду делать разбор R1, первого поста про DeepSeek (https://www.group-telegram.com/pl/gonzo_ML.com/3239), имеющегося разбора V3 и поста от Аламмара (https://newsletter.languagemodels.co/p/the-illustrated-deepseek-r1), кажется, достаточно. Но посмотрим.

Из технически важных моментов хочется ещё раз обратить внимание на важность обучения в FP8 из предыдущего поста (https://www.group-telegram.com/pl/gonzo_ML.com/3294). Это биг дил, что наконец оно завелось в промышленном режиме для большой модели хорошего качества. Эффективно оно удваивает доступные вычислительные мощности или даёт возможность обучать модели в два раза большего размера.

Обучение разделено на pre-training и post-training.

Pre-training.


Относительно предыдущего DeepSeek-V2 (https://arxiv.org/abs/2405.04434) увеличена доля примеров про математику и программирование, а также расширен набор языков за пределы английского и китайского. При этом всё равно, английский + китайский составляют большую часть датасета, а описания композиции и распределения других языков я не нашёл.

Всего итоговый датасет содержит 14.8T токенов (у предыдущей версии было 8.1T токенов). Токенизатор BPE со словарём в 128k. Относительно предыдущей версии токенизатор изменён и обучен на более мультиязычном корпусе, а также добавлены токены, комбинирующие пунктуацию с переносами строк.

В предобучении в дополнение к стандартному Next-Token-Prediction используется Fill-in-Middle (FIM) стратегия с частотой 0.1, применённая в DeepSeekCoder-V2 (https://arxiv.org/abs/2406.11931), но изобретённая ранее в OpenAI (https://arxiv.org/abs/2207.14255), где модель должна восстановить середину текста. Если точнее, то используется подход Prefix-Suffix-Middle (PSM) для структурирования данных (на уровне документов) следующим образом:

<|fim_begin|>𝑓_pre<|fim_hole|>𝑓_suf<|fim_end|>𝑓_middle<|eos_token|>.

Во время предобучения максимальная длина последовательности 4k токенов.

После предобучения применяют YaRN (https://arxiv.org/abs/2309.00071) для расширения контекста и делают две дополнительные фазы обучения по 1000 шагов, где расширяют контекст с 4k до 32k, а затем до 128k.

В итоге на множестве бенчмарков, включая английский, китайский, код, математику и один мультиязычный, в целом бьют предыдущую версию DeepSeek-V2, а также две dense модели, Qwen2.5 72B Base и LLaMA-3.1 405B Base, получая сильнейшую из открытых моделей. Сравнение с Qwen2.5 72B Base интересно, это была одна из сильных моделей, активных параметров у неё получается практически в два раза больше, чем у DeepSeek. У LLaMA-3.1 405B Base их вообще в 11 раз больше, но она на этих бенчмарках хуже.

Авторы заявляют, что для DeepSeek-V3 на каждый триллион токенов обучения требуется 180K H800 GPU-часов.

Post-training.

Состоит из двух частей, Supervised Fine-Tuning (SFT) и RL.

SFT делался на дополнительных Reasoning и Non-Reasoning данных. Это всё было сделано для разных областей (упоминания конкретных доменов далее) и итоговый датасет для instruction-tuning составляет 1.5M примеров.

Reasoning данные фокусировались на математике, программировании, логических задачах. Данные генерировались внутренней DeepSeek-R1 моделью (которая в свою очередь была обучена на DeepSeek-V3 в качестве базы — см.рекурсия). Но проблема с данными от R1 была в её многословности, overthinking и плохом форматировании.

Для генерации данных из конкретного домена создавалась экспертная модель, также обученная через SFT + RL. Генерировались два типа SFT сэмплов: <problem, original response> и <system prompt, problem, R1 response>. В промпте были инструкции для рефлексии и верификации. В RL фазе с высокой температурой генерились ответы модели, и постепенно модель выучивала паттерны R1. После обучения с помощью rejection sampling генерировались примеры для SFT оригинальной модели.



group-telegram.com/gonzo_ML/3312
Create:
Last Update:

Сегодня обсудим процедуру обучения DeepSeek-V3. Архитектура и технические решения были разобраны в предыдущем посте (https://www.group-telegram.com/pl/gonzo_ML.com/3292).

На всякий случай ещё раз явно проговорю, это не DeepSeek-R1, которая reasoning по типу o1/o3, это базовая чат-модель, на которой R1 была обучена. Не уверен, что буду делать разбор R1, первого поста про DeepSeek (https://www.group-telegram.com/pl/gonzo_ML.com/3239), имеющегося разбора V3 и поста от Аламмара (https://newsletter.languagemodels.co/p/the-illustrated-deepseek-r1), кажется, достаточно. Но посмотрим.

Из технически важных моментов хочется ещё раз обратить внимание на важность обучения в FP8 из предыдущего поста (https://www.group-telegram.com/pl/gonzo_ML.com/3294). Это биг дил, что наконец оно завелось в промышленном режиме для большой модели хорошего качества. Эффективно оно удваивает доступные вычислительные мощности или даёт возможность обучать модели в два раза большего размера.

Обучение разделено на pre-training и post-training.

Pre-training.


Относительно предыдущего DeepSeek-V2 (https://arxiv.org/abs/2405.04434) увеличена доля примеров про математику и программирование, а также расширен набор языков за пределы английского и китайского. При этом всё равно, английский + китайский составляют большую часть датасета, а описания композиции и распределения других языков я не нашёл.

Всего итоговый датасет содержит 14.8T токенов (у предыдущей версии было 8.1T токенов). Токенизатор BPE со словарём в 128k. Относительно предыдущей версии токенизатор изменён и обучен на более мультиязычном корпусе, а также добавлены токены, комбинирующие пунктуацию с переносами строк.

В предобучении в дополнение к стандартному Next-Token-Prediction используется Fill-in-Middle (FIM) стратегия с частотой 0.1, применённая в DeepSeekCoder-V2 (https://arxiv.org/abs/2406.11931), но изобретённая ранее в OpenAI (https://arxiv.org/abs/2207.14255), где модель должна восстановить середину текста. Если точнее, то используется подход Prefix-Suffix-Middle (PSM) для структурирования данных (на уровне документов) следующим образом:

<|fim_begin|>𝑓_pre<|fim_hole|>𝑓_suf<|fim_end|>𝑓_middle<|eos_token|>.

Во время предобучения максимальная длина последовательности 4k токенов.

После предобучения применяют YaRN (https://arxiv.org/abs/2309.00071) для расширения контекста и делают две дополнительные фазы обучения по 1000 шагов, где расширяют контекст с 4k до 32k, а затем до 128k.

В итоге на множестве бенчмарков, включая английский, китайский, код, математику и один мультиязычный, в целом бьют предыдущую версию DeepSeek-V2, а также две dense модели, Qwen2.5 72B Base и LLaMA-3.1 405B Base, получая сильнейшую из открытых моделей. Сравнение с Qwen2.5 72B Base интересно, это была одна из сильных моделей, активных параметров у неё получается практически в два раза больше, чем у DeepSeek. У LLaMA-3.1 405B Base их вообще в 11 раз больше, но она на этих бенчмарках хуже.

Авторы заявляют, что для DeepSeek-V3 на каждый триллион токенов обучения требуется 180K H800 GPU-часов.

Post-training.

Состоит из двух частей, Supervised Fine-Tuning (SFT) и RL.

SFT делался на дополнительных Reasoning и Non-Reasoning данных. Это всё было сделано для разных областей (упоминания конкретных доменов далее) и итоговый датасет для instruction-tuning составляет 1.5M примеров.

Reasoning данные фокусировались на математике, программировании, логических задачах. Данные генерировались внутренней DeepSeek-R1 моделью (которая в свою очередь была обучена на DeepSeek-V3 в качестве базы — см.рекурсия). Но проблема с данными от R1 была в её многословности, overthinking и плохом форматировании.

Для генерации данных из конкретного домена создавалась экспертная модель, также обученная через SFT + RL. Генерировались два типа SFT сэмплов: <problem, original response> и <system prompt, problem, R1 response>. В промпте были инструкции для рефлексии и верификации. В RL фазе с высокой температурой генерились ответы модели, и постепенно модель выучивала паттерны R1. После обучения с помощью rejection sampling генерировались примеры для SFT оригинальной модели.

BY gonzo-обзоры ML статей


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/gonzo_ML/3312

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

I want a secure messaging app, should I use Telegram? Crude oil prices edged higher after tumbling on Thursday, when U.S. West Texas intermediate slid back below $110 per barrel after topping as much as $130 a barrel in recent sessions. Still, gas prices at the pump rose to fresh highs. NEWS What distinguishes the app from competitors is its use of what's known as channels: Public or private feeds of photos and videos that can be set up by one person or an organization. The channels have become popular with on-the-ground journalists, aid workers and Ukrainian President Volodymyr Zelenskyy, who broadcasts on a Telegram channel. The channels can be followed by an unlimited number of people. Unlike Facebook, Twitter and other popular social networks, there is no advertising on Telegram and the flow of information is not driven by an algorithm. The account, "War on Fakes," was created on February 24, the same day Russian President Vladimir Putin announced a "special military operation" and troops began invading Ukraine. The page is rife with disinformation, according to The Atlantic Council's Digital Forensic Research Lab, which studies digital extremism and published a report examining the channel.
from pl


Telegram gonzo-обзоры ML статей
FROM American