Диагональные орграфы, Кошулевы алгебры и триангуляции гомологических сфер
Магнитудные гомологии орграфа G -- это биградуированная абелева группа MH_{n,l}(G), где n,l -- целые числа. Такая странная теория гомологий орграфов, которая помнит слишком много информации, но непонятно какой. Магнитудные гомологии определяются и для обобщенных метрических пространств, но сейчас я хочу поговорить об орграфах. Графы я буду считать частным случаем орграфов, где каждое неориентированное ребро -- это пара ориентированных рёбер в обе стороны. Расстояние d(x,y) из вершины x в вершину y определяется как длина кратчайшего ориентированного пути, и если пути нет, то расстояние равно бесконечности.
При n=0 ненулевые магнитудные гомологии бывают только при l=0, и MH_{0,0} -- это свободная абелева группа, ранг которой равен количеству вершин.
При n=1 ненулевые магнитудные гомологии бывают только при l=1, и MH_{1,1} -- это свободная абелева группа, ранг которой равен количеству рёбер.
При n=2 магнитудные гомологии бывают нетривиальными уже для любого l=2,3,4,...
Однако для многих простых примеров орграфов по непонятной причине оказывается, что магнитудные гомологии сконцентрированы на диагонали. То есть они равны нулю при n не равном l. Такие орграфы назвали диагональными.
Например, неориентированные деревья диагональны, полные графы диагональны. Если взять джойн любых двух графов, то получается диагональный граф. Ещё бокс произведение диагональных графов диагонально. Это уже даёт большой запас диагональных графов. Граф икосаэдра ещё диагонален. Есть и другие интересные маленькие примеры. Но если пробуешь как-то описать все такие графы, то сталкиваешься с тем, что это какая-то жесть. Очень сложный какой-то класс графов. Не получается описать. И мы со Львом тут недавно связали этот класс орграфов с двумя известными темами: Кошулевыми алгебрами, и гомологическими сферами. Это отчасти объясняет сложность этого класса.
-------------------------- Связь с Кошулевыми алгебрами
По орграфу G можно построить такую градуированную алгебру σG над полем k, которую я называю алгеброй расстояний. Как векторное пространство она порождена парами вершин (x,y), таких, что d(x,y)<∞. Умножение определяется так, что (x,y)(y,z) равно (x,z), если d(x,y)+d(y,z) = d(x,z); 0, если d(x,y)+d(y,z) > d(x,z). Градуировка определяется так, что степень (x,y) равна d(x,y).
Не очень сложно доказать такую теорему:
ТЕОРЕМА: G диагонален тогда и только тогда, когда алгебра σG Кошулева для любого поля k.
Кошулевы алгебры — это довольно замороченный класс алгебр, внутри класса квадратичных алгебр. Квадратичные алгебры — это понятно, а вот Кошулевы — это жесть. Зато для диагональных графов мы понимаем, что их алгебра расстояний квадратична. Это позволяет описать очень удобное необходимое условие диагональности в комбинаторных терминах.
Диагональные орграфы, Кошулевы алгебры и триангуляции гомологических сфер
Магнитудные гомологии орграфа G -- это биградуированная абелева группа MH_{n,l}(G), где n,l -- целые числа. Такая странная теория гомологий орграфов, которая помнит слишком много информации, но непонятно какой. Магнитудные гомологии определяются и для обобщенных метрических пространств, но сейчас я хочу поговорить об орграфах. Графы я буду считать частным случаем орграфов, где каждое неориентированное ребро -- это пара ориентированных рёбер в обе стороны. Расстояние d(x,y) из вершины x в вершину y определяется как длина кратчайшего ориентированного пути, и если пути нет, то расстояние равно бесконечности.
При n=0 ненулевые магнитудные гомологии бывают только при l=0, и MH_{0,0} -- это свободная абелева группа, ранг которой равен количеству вершин.
При n=1 ненулевые магнитудные гомологии бывают только при l=1, и MH_{1,1} -- это свободная абелева группа, ранг которой равен количеству рёбер.
При n=2 магнитудные гомологии бывают нетривиальными уже для любого l=2,3,4,...
Однако для многих простых примеров орграфов по непонятной причине оказывается, что магнитудные гомологии сконцентрированы на диагонали. То есть они равны нулю при n не равном l. Такие орграфы назвали диагональными.
Например, неориентированные деревья диагональны, полные графы диагональны. Если взять джойн любых двух графов, то получается диагональный граф. Ещё бокс произведение диагональных графов диагонально. Это уже даёт большой запас диагональных графов. Граф икосаэдра ещё диагонален. Есть и другие интересные маленькие примеры. Но если пробуешь как-то описать все такие графы, то сталкиваешься с тем, что это какая-то жесть. Очень сложный какой-то класс графов. Не получается описать. И мы со Львом тут недавно связали этот класс орграфов с двумя известными темами: Кошулевыми алгебрами, и гомологическими сферами. Это отчасти объясняет сложность этого класса.
-------------------------- Связь с Кошулевыми алгебрами
По орграфу G можно построить такую градуированную алгебру σG над полем k, которую я называю алгеброй расстояний. Как векторное пространство она порождена парами вершин (x,y), таких, что d(x,y)<∞. Умножение определяется так, что (x,y)(y,z) равно (x,z), если d(x,y)+d(y,z) = d(x,z); 0, если d(x,y)+d(y,z) > d(x,z). Градуировка определяется так, что степень (x,y) равна d(x,y).
Не очень сложно доказать такую теорему:
ТЕОРЕМА: G диагонален тогда и только тогда, когда алгебра σG Кошулева для любого поля k.
Кошулевы алгебры — это довольно замороченный класс алгебр, внутри класса квадратичных алгебр. Квадратичные алгебры — это понятно, а вот Кошулевы — это жесть. Зато для диагональных графов мы понимаем, что их алгебра расстояний квадратична. Это позволяет описать очень удобное необходимое условие диагональности в комбинаторных терминах.
BY Математическая свалка Сепы
Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260
Friday’s performance was part of a larger shift. For the week, the Dow, S&P 500 and Nasdaq fell 2%, 2.9%, and 3.5%, respectively. In the past, it was noticed that through bulk SMSes, investors were induced to invest in or purchase the stocks of certain listed companies. One thing that Telegram now offers to all users is the ability to “disappear” messages or set remote deletion deadlines. That enables users to have much more control over how long people can access what you’re sending them. Given that Russian law enforcement officials are reportedly (via Insider) stopping people in the street and demanding to read their text messages, this could be vital to protect individuals from reprisals. Additionally, investors are often instructed to deposit monies into personal bank accounts of individuals who claim to represent a legitimate entity, and/or into an unrelated corporate account. To lend credence and to lure unsuspecting victims, perpetrators usually claim that their entity and/or the investment schemes are approved by financial authorities. As a result, the pandemic saw many newcomers to Telegram, including prominent anti-vaccine activists who used the app's hands-off approach to share false information on shots, a study from the Institute for Strategic Dialogue shows.
from pl