Telegram Group & Telegram Channel
Давайте я чуть-чуть теперь скажу про то, откуда такой словарь берётся (или, точнее, может браться).

Возьмём окружность единичного радиуса, x^2+ (y-1)^2=1, и точку B=(0,0) на ней.
Растянем её во много раз (для начала в 10) вокруг точки B — посмотрим на её окрестность под увеличительным стеклом. Под увеличением окружность — как и любая гладкая кривая — становится всё больше похожа на касательную в той точке, вокруг которой мы увеличиваем. Так что казалось бы, ничего интересного мы так не увидим. Но!
Давайте дополнительно растягивать в направлении, перпендикулярном касательной, ещё во столько же раз. В итоге, если мы по горизонтали растягиваем в 10 раз — по вертикали мы растянем в 100. Под действием такого преобразования окружность начинает становиться всё больше похожей на параболу (в данном случае, на y=x^2/2)!

То есть можно брать верное семейство утверждений, у которых «всё самое интересное» происходит всё ближе и ближе к точке B, и смотреть на них через такое «кривое увеличение». В пределе из эллипсов, в которые мы растягиваем окружность, получится та самая парабола, и предельное утверждение про неё.



group-telegram.com/mathtabletalks/4620
Create:
Last Update:

Давайте я чуть-чуть теперь скажу про то, откуда такой словарь берётся (или, точнее, может браться).

Возьмём окружность единичного радиуса, x^2+ (y-1)^2=1, и точку B=(0,0) на ней.
Растянем её во много раз (для начала в 10) вокруг точки B — посмотрим на её окрестность под увеличительным стеклом. Под увеличением окружность — как и любая гладкая кривая — становится всё больше похожа на касательную в той точке, вокруг которой мы увеличиваем. Так что казалось бы, ничего интересного мы так не увидим. Но!
Давайте дополнительно растягивать в направлении, перпендикулярном касательной, ещё во столько же раз. В итоге, если мы по горизонтали растягиваем в 10 раз — по вертикали мы растянем в 100. Под действием такого преобразования окружность начинает становиться всё больше похожей на параболу (в данном случае, на y=x^2/2)!

То есть можно брать верное семейство утверждений, у которых «всё самое интересное» происходит всё ближе и ближе к точке B, и смотреть на них через такое «кривое увеличение». В пределе из эллипсов, в которые мы растягиваем окружность, получится та самая парабола, и предельное утверждение про неё.

BY Математические байки






Share with your friend now:
group-telegram.com/mathtabletalks/4620

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Asked about its stance on disinformation, Telegram spokesperson Remi Vaughn told AFP: "As noted by our CEO, the sheer volume of information being shared on channels makes it extremely difficult to verify, so it's important that users double-check what they read." However, the perpetrators of such frauds are now adopting new methods and technologies to defraud the investors. "Someone posing as a Ukrainian citizen just joins the chat and starts spreading misinformation, or gathers data, like the location of shelters," Tsekhanovska said, noting how false messages have urged Ukrainians to turn off their phones at a specific time of night, citing cybersafety. Messages are not fully encrypted by default. That means the company could, in theory, access the content of the messages, or be forced to hand over the data at the request of a government. On Telegram’s website, it says that Pavel Durov “supports Telegram financially and ideologically while Nikolai (Duvov)’s input is technological.” Currently, the Telegram team is based in Dubai, having moved around from Berlin, London and Singapore after departing Russia. Meanwhile, the company which owns Telegram is registered in the British Virgin Islands.
from pl


Telegram Математические байки
FROM American