Telegram Group & Telegram Channel
Краткая история иголки в стоге сена

Всё началось... нет, не с Твиттера, как мне казалось изначально, когда я сел писать этот пост. А с поста MosaicML про модель с 65k контекстом и поста Anthropic про модель с 100k контекстом. Был май 2023 года, GPT-4 уже 2 месяца как выпущена, поэтому надо было удивлять. 😘
Для публики же широкий контекст был на бумаге, и нужно было проверить, реально ли он работает.

Поэтому почти сразу же появились первые тесты, например Little Retrieval Test, далее LRT. В каждой нумерованной строчке контекста мы пишем случайные числа. На случайной строчке говорим, число из какой строчки нужно вернуть. А ещё есть версия с перемешанными строчками. Claude в этом тесте оказалсь неплоха, но далеко не идеальна. Модификацию LRT предложили в посте про LongChat. Номер линии заменили на случайные слова, да и инструкцию вроде как переместили строго в конец. Был конец июня.

Упрощенно это выглядит примерно так:

line torpid-kid: CONTENT is <2156>
line moaning-conversation: CONTENT is <9805>
line tacit-colonial: CONTENT is <6668>

What is the <CONTENT> in line torpid-kid?

Output: 2156


И тут в нашу историю врывается хайп в Твиттере. 🍿 Вот самая известная вариация метода (от Грега): твит 1, твит 2, репо. Твиты от 8 и 21 ноября 2023. Суть такова:
- Берём все очерки Пола Грэма, соединяем в один большой текст, “сено”.
- В разные места пробуем вставлять случайный факт, “иголку”. По умолчанию иголка является фактом про определенный город.
- Просим модели ответить на вопрос об этом факте, используя только контекст.
- Оцениваем схожесть ответа на эталонный ещё одним запросом к модели.
- Получаем красивые картинки для разной глубины вставки и длины контекста.
То есть, человек взял и перепридумал LRT, накинув лишних шагов и сложностей с оценкой ответа.
Это подхватили: Гугл, например, ссылается на этот репозиторий в анонсе Gemini 1.5 Pro.

Упрощенно это выглядит примерно так:

<куски текстов>
The best thing to do in San Francisco is eat a sandwich and sit in Dolores Park on a sunny day.
<куски текстов>

What is the best thing to do in San Francisco?

Output: eat a sandwich and sit in Dolores Park on a sunny day.


Есть несколько расширений этого бенчмарка:
- В модификации от Arize всё упростили. Факт стал случайным числом, привязанным к случайному названию города. Шаблон: “The special magic {city} number is: {rnd_number}”. Модели нужно извлечь это случайное число по названию этого города. Результат теперь гораздо проще оценить, не нужен шаг с оценкой схожести. То есть мы вернулись практически к оригинальному LRT! Спустя полгода. 😂
- В статье про LWM, открытую модель с 1M контекстом, метод обобщили вставкой нескольких “иголок“ и поиском не всех из них.
- В BABILong в качестве “иголок” взяли bAbI, древний синтетический бенчмарк с вопросами по заданной ситуации, в котором фактов несколько, и важен их порядок. Так проверяется то, что модели не просто ищут факты, но и умеют ими как-то оперировать после этого. Только ребята не сослались вообще ни на кого, осуждаю. 👎

Итого мы имеем с десяток вариаций бенчмарка, создатели половины из которых были даже не в курсе предыдущих попыток и переизобретали всё заново. При том, что находилось всё буквально в паре кликов. 😢

За кадром остались другие тесты для длинных контекстов, про них расскажу когда-нибудь потом, может даже скоро.
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/senior_augur/32
Create:
Last Update:

Краткая история иголки в стоге сена

Всё началось... нет, не с Твиттера, как мне казалось изначально, когда я сел писать этот пост. А с поста MosaicML про модель с 65k контекстом и поста Anthropic про модель с 100k контекстом. Был май 2023 года, GPT-4 уже 2 месяца как выпущена, поэтому надо было удивлять. 😘
Для публики же широкий контекст был на бумаге, и нужно было проверить, реально ли он работает.

Поэтому почти сразу же появились первые тесты, например Little Retrieval Test, далее LRT. В каждой нумерованной строчке контекста мы пишем случайные числа. На случайной строчке говорим, число из какой строчки нужно вернуть. А ещё есть версия с перемешанными строчками. Claude в этом тесте оказалсь неплоха, но далеко не идеальна. Модификацию LRT предложили в посте про LongChat. Номер линии заменили на случайные слова, да и инструкцию вроде как переместили строго в конец. Был конец июня.

Упрощенно это выглядит примерно так:


line torpid-kid: CONTENT is <2156>
line moaning-conversation: CONTENT is <9805>
line tacit-colonial: CONTENT is <6668>

What is the <CONTENT> in line torpid-kid?

Output: 2156


И тут в нашу историю врывается хайп в Твиттере. 🍿 Вот самая известная вариация метода (от Грега): твит 1, твит 2, репо. Твиты от 8 и 21 ноября 2023. Суть такова:
- Берём все очерки Пола Грэма, соединяем в один большой текст, “сено”.
- В разные места пробуем вставлять случайный факт, “иголку”. По умолчанию иголка является фактом про определенный город.
- Просим модели ответить на вопрос об этом факте, используя только контекст.
- Оцениваем схожесть ответа на эталонный ещё одним запросом к модели.
- Получаем красивые картинки для разной глубины вставки и длины контекста.
То есть, человек взял и перепридумал LRT, накинув лишних шагов и сложностей с оценкой ответа.
Это подхватили: Гугл, например, ссылается на этот репозиторий в анонсе Gemini 1.5 Pro.

Упрощенно это выглядит примерно так:

<куски текстов>
The best thing to do in San Francisco is eat a sandwich and sit in Dolores Park on a sunny day.
<куски текстов>

What is the best thing to do in San Francisco?

Output: eat a sandwich and sit in Dolores Park on a sunny day.


Есть несколько расширений этого бенчмарка:
- В модификации от Arize всё упростили. Факт стал случайным числом, привязанным к случайному названию города. Шаблон: “The special magic {city} number is: {rnd_number}”. Модели нужно извлечь это случайное число по названию этого города. Результат теперь гораздо проще оценить, не нужен шаг с оценкой схожести. То есть мы вернулись практически к оригинальному LRT! Спустя полгода. 😂
- В статье про LWM, открытую модель с 1M контекстом, метод обобщили вставкой нескольких “иголок“ и поиском не всех из них.
- В BABILong в качестве “иголок” взяли bAbI, древний синтетический бенчмарк с вопросами по заданной ситуации, в котором фактов несколько, и важен их порядок. Так проверяется то, что модели не просто ищут факты, но и умеют ими как-то оперировать после этого. Только ребята не сослались вообще ни на кого, осуждаю. 👎

Итого мы имеем с десяток вариаций бенчмарка, создатели половины из которых были даже не в курсе предыдущих попыток и переизобретали всё заново. При том, что находилось всё буквально в паре кликов. 😢

За кадром остались другие тесты для длинных контекстов, про них расскажу когда-нибудь потом, может даже скоро.

BY Старший Авгур


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/senior_augur/32

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The picture was mixed overseas. Hong Kong’s Hang Seng Index fell 1.6%, under pressure from U.S. regulatory scrutiny on New York-listed Chinese companies. Stocks were more buoyant in Europe, where Frankfurt’s DAX surged 1.4%. As the war in Ukraine rages, the messaging app Telegram has emerged as the go-to place for unfiltered live war updates for both Ukrainian refugees and increasingly isolated Russians alike. There was another possible development: Reuters also reported that Ukraine said that Belarus could soon join the invasion of Ukraine. However, the AFP, citing a Pentagon official, said the U.S. hasn’t yet seen evidence that Belarusian troops are in Ukraine. Either way, Durov says that he withdrew his resignation but that he was ousted from his company anyway. Subsequently, control of the company was reportedly handed to oligarchs Alisher Usmanov and Igor Sechin, both allegedly close associates of Russian leader Vladimir Putin. If you initiate a Secret Chat, however, then these communications are end-to-end encrypted and are tied to the device you are using. That means it’s less convenient to access them across multiple platforms, but you are at far less risk of snooping. Back in the day, Secret Chats received some praise from the EFF, but the fact that its standard system isn’t as secure earned it some criticism. If you’re looking for something that is considered more reliable by privacy advocates, then Signal is the EFF’s preferred platform, although that too is not without some caveats.
from pl


Telegram Старший Авгур
FROM American