Telegram Group & Telegram Channel
История факторов в R

Сегодня разберем историю факторов в R, почему раньше при чтении таблиц аргумент stringsAsFactors по умолчанию был TRUE, и почему с версии R 4.0 это отменили, а также нужны ли факторы сейчас.

Моя история знакомства с факторами в R была такова: когда я только начинала осваивать R (это было в 2017 году), и использовала его для работы с табличками дифференциальной экспрессии генов, то мне сразу сказали, что при чтении таблицы надо использовать аргумент stringsAsFactors = FALSE, чтобы строки не превратились в факторы. Прозвучало это супер непонятно, но далее я обратила внимание, что если этого не делать, то после фильтрации таблицы в строковых переменных остаются какие-то уровни (levels), это было неудобно, поэтому я стала следить, чтобы всегда при чтении таблиц было указано stringsAsFactors = FALSE. И потом при работе уже с дисперсионным анализом поняла, зачем нужны были факторы, и как их использовать, но все равно они оставались чем-то загадочным, средним между строкой и числом, даже казались мне ближе к строке (но это не так, сейчас разберем почему).

Изначально R был создан и использовался в первую очередь для статистических задач, и поэтому превращение всех строк в факторы при чтении таблиц было оправданно, поскольку не числовая переменная в таблице скорее всего означала категории (пол, группа крови, наличие болезни и тп). Для дальнейшего статистического анализа, например, при создании моделей с помощью функций lm(), glm(), факторы были нужны для корректной работы этих функций.

Кроме этого, есть еще одна менее очевидная причина. Раньше хранение факторов занимало меньше места в памяти, чем хранение строк. Дело в том, что факторы во внутреннем представлении R – это integer, то есть целые числа, соответственно занимают около 4 байт памяти. При этом строки занимают больше памяти и при работе с категориальными переменными каждая строка таблицы занимала свое место в памяти (то есть если записано disease в 100 строках, то грубо говоря и памяти будет занято как место занимаемое строкой disease*100) [1].
Плюс сравнивать факторы было проще, чем строки, поскольку сравнение чисел происходит за фиксированное время, в то время как для сравнения строк необходимо было "проходить" каждую строку побайтно.


🖥 Все изменилось в обновлении R 2.6.0 в 2007 году, когда сделали хеширование CHARSXP, что означало, что теперь ВСЕ строки хешируются и хранятся в глобальном пуле строк, и теперь к строкам обращались по целочисленным указателям: не было нужды хранить каждую копию строки, достаточно было хранить только указатель.
Между прочим, это обновление было сделано благодаря проекту Bioconductor, потому что разработчикам приходилось работать с большими строками, например, с последовательностями нуклеиновых кислот и белков, и без хеширования строк работа со старым типом была максимально неэффективной.

После этого выигрыш в хранении и сравнении строк в виде факторов перестал быть существенным, тем не менее факторы все еще необходимы в lm, glm и других подобных функциях, а также для упорядочивания категорий на графике.

Иллюстрация объема памяти, занимаемого на хранение строк (пример взят из книги Advanced R):
banana <- "bananas bananas bananas"
obj_size(banana)
#> 136 B
obj_size(rep(banana, 100))
#> 928 B

Мы создали 100 копий строки, но при этом занимаемый объем увеличился всего в 6.8 раз!

При чтении таблиц средствами базового R аргумент stringsAsFactors был TRUE, и только в 2020 году с версии R 4.0 разработчики R это изменили на FALSE. Только в функциях из пакета readr строки не превращались в факторы по умолчанию. На мой взгляд, разработчики R довольно поздно изменили дефолтное поведение функций read.table и read.csv, но лучше уж поздно чем никогда, хотя я сейчас пользуюсь только readr-ом для загрузки таблиц (и fread, при необходимости).

Ссылки на источники:
1. https://simplystatistics.org/posts/2015-07-24-stringsasfactors-an-unauthorized-biography/
2. https://notstatschat.rbind.io/2015/07/25/stringsasfactors-sigh/
3. https://notstatschat.rbind.io/2022/03/31/stringsasfactors-do-you-feel-lucky/

#R #history #baseR
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/stats_for_science/84
Create:
Last Update:

История факторов в R

Сегодня разберем историю факторов в R, почему раньше при чтении таблиц аргумент stringsAsFactors по умолчанию был TRUE, и почему с версии R 4.0 это отменили, а также нужны ли факторы сейчас.

Моя история знакомства с факторами в R была такова: когда я только начинала осваивать R (это было в 2017 году), и использовала его для работы с табличками дифференциальной экспрессии генов, то мне сразу сказали, что при чтении таблицы надо использовать аргумент stringsAsFactors = FALSE, чтобы строки не превратились в факторы. Прозвучало это супер непонятно, но далее я обратила внимание, что если этого не делать, то после фильтрации таблицы в строковых переменных остаются какие-то уровни (levels), это было неудобно, поэтому я стала следить, чтобы всегда при чтении таблиц было указано stringsAsFactors = FALSE. И потом при работе уже с дисперсионным анализом поняла, зачем нужны были факторы, и как их использовать, но все равно они оставались чем-то загадочным, средним между строкой и числом, даже казались мне ближе к строке (но это не так, сейчас разберем почему).

Изначально R был создан и использовался в первую очередь для статистических задач, и поэтому превращение всех строк в факторы при чтении таблиц было оправданно, поскольку не числовая переменная в таблице скорее всего означала категории (пол, группа крови, наличие болезни и тп). Для дальнейшего статистического анализа, например, при создании моделей с помощью функций lm(), glm(), факторы были нужны для корректной работы этих функций.

Кроме этого, есть еще одна менее очевидная причина. Раньше хранение факторов занимало меньше места в памяти, чем хранение строк. Дело в том, что факторы во внутреннем представлении R – это integer, то есть целые числа, соответственно занимают около 4 байт памяти. При этом строки занимают больше памяти и при работе с категориальными переменными каждая строка таблицы занимала свое место в памяти (то есть если записано disease в 100 строках, то грубо говоря и памяти будет занято как место занимаемое строкой disease*100) [1].
Плюс сравнивать факторы было проще, чем строки, поскольку сравнение чисел происходит за фиксированное время, в то время как для сравнения строк необходимо было "проходить" каждую строку побайтно.


🖥 Все изменилось в обновлении R 2.6.0 в 2007 году, когда сделали хеширование CHARSXP, что означало, что теперь ВСЕ строки хешируются и хранятся в глобальном пуле строк, и теперь к строкам обращались по целочисленным указателям: не было нужды хранить каждую копию строки, достаточно было хранить только указатель.
Между прочим, это обновление было сделано благодаря проекту Bioconductor, потому что разработчикам приходилось работать с большими строками, например, с последовательностями нуклеиновых кислот и белков, и без хеширования строк работа со старым типом была максимально неэффективной.

После этого выигрыш в хранении и сравнении строк в виде факторов перестал быть существенным, тем не менее факторы все еще необходимы в lm, glm и других подобных функциях, а также для упорядочивания категорий на графике.

Иллюстрация объема памяти, занимаемого на хранение строк (пример взят из книги Advanced R):

banana <- "bananas bananas bananas"
obj_size(banana)
#> 136 B
obj_size(rep(banana, 100))
#> 928 B

Мы создали 100 копий строки, но при этом занимаемый объем увеличился всего в 6.8 раз!

При чтении таблиц средствами базового R аргумент stringsAsFactors был TRUE, и только в 2020 году с версии R 4.0 разработчики R это изменили на FALSE. Только в функциях из пакета readr строки не превращались в факторы по умолчанию. На мой взгляд, разработчики R довольно поздно изменили дефолтное поведение функций read.table и read.csv, но лучше уж поздно чем никогда, хотя я сейчас пользуюсь только readr-ом для загрузки таблиц (и fread, при необходимости).

Ссылки на источники:
1. https://simplystatistics.org/posts/2015-07-24-stringsasfactors-an-unauthorized-biography/
2. https://notstatschat.rbind.io/2015/07/25/stringsasfactors-sigh/
3. https://notstatschat.rbind.io/2022/03/31/stringsasfactors-do-you-feel-lucky/

#R #history #baseR

BY Статистика и R в науке и аналитике


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/stats_for_science/84

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

READ MORE In 2018, Russia banned Telegram although it reversed the prohibition two years later. Although some channels have been removed, the curation process is considered opaque and insufficient by analysts. Some people used the platform to organize ahead of the storming of the U.S. Capitol in January 2021, and last month Senator Mark Warner sent a letter to Durov urging him to curb Russian information operations on Telegram. At the start of 2018, the company attempted to launch an Initial Coin Offering (ICO) which would enable it to enable payments (and earn the cash that comes from doing so). The initial signals were promising, especially given Telegram’s user base is already fairly crypto-savvy. It raised an initial tranche of cash – worth more than a billion dollars – to help develop the coin before opening sales to the public. Unfortunately, third-party sales of coins bought in those initial fundraising rounds raised the ire of the SEC, which brought the hammer down on the whole operation. In 2020, officials ordered Telegram to pay a fine of $18.5 million and hand back much of the cash that it had raised.
from pl


Telegram Статистика и R в науке и аналитике
FROM American