Telegram Group & Telegram Channel
Может ли искусственный интеллект сделать квантовые вычисления ненужными?

Недавние достижения в области ИИ ставят под сомнение необходимость квантовых вычислений в ближайшем будущем. Несмотря на то что квантовые компьютеры обещают революционные изменения в ряде отраслей, их развитие сталкивается с серьезными техническими и экономическими препятствиями. Между тем ИИ и машинное обучение уже сегодня демонстрируют способность решать сложные задачи на существующих архитектурах, что потенциально может снизить потребность в квантовых системах.

Квантовые компьютеры основываются на принципах квантовой механики и используют кубиты вместо традиционных битов. Это позволяет им одновременно обрабатывать огромное количество данных и решать задачи, которые для классических компьютеров остаются сложными или даже нерешаемыми.

Однако квантовые технологии находятся на ранней стадии развития и сталкиваются с рядом проблем:

1. Сложность создания и управления системами:
Квантовые компьютеры требуют поддержания сверхнизких температур, чтобы избежать потери квантовой когерентности.

2. Высокая стоимость:
Разработка и эксплуатация квантовых компьютеров обходятся чрезвычайно дорого, что ограничивает их доступность.

3. Ограниченная функциональность:
Современные квантовые устройства пока что пригодны только для выполнения узкого круга задач, таких как факторизация чисел или моделирование молекул.

По данным MIT Technology Review, быстрый прогресс в области применения ИИ для моделирования физических и химических систем может сделать квантовые компьютеры менее необходимыми. Современные алгоритмы машинного обучения уже достигают впечатляющих результатов в задачах, ранее считавшихся прерогативой квантовых технологий.

Примеры:

1. Симуляция сложных систем. ИИ способен точно моделировать молекулы и материалы, оптимизируя их структуру для нужд химии, фармацевтики и материаловедения. Ранее такие задачи предполагалось решать на квантовых компьютерах.

2. Оптимизация процессов. С помощью ИИ возможно эффективно решать задачи оптимизации и прогнозирования, такие как построение логистических цепочек или разработка новых лекарств.

3. Ускорение вычислений. ИИ уже сейчас обеспечивает значительное ускорение классических вычислений за счёт использования специализированных алгоритмов.

ИИ уже широко внедрен в существующую инфраструктуру, тогда как квантовые технологии требуют создания совершенно новых систем. Алгоритмы ИИ могут работать на современных суперкомпьютерах и даже облачных платформах. Это делает их значительно более доступными для широкого круга пользователей. Использование ИИ требует значительно меньших финансовых затрат по сравнению с разработкой и эксплуатацией квантовых систем. Алгоритмы машинного обучения могут быть адаптированы для различных отраслей, в то время как квантовые системы пока что имеют ограниченную область применения.

Некоторые специалисты считают, что ИИ может "съесть обед квантовых вычислений". Это метафорическое выражение подчеркивает, что ИИ способен занять ту нишу, для которой разрабатывались квантовые технологии. Например, использование ИИ в моделировании химических реакций уже ставит под сомнение необходимость квантовых компьютеров в этом направлении.

Однако есть мнение, что ИИ и квантовые компьютеры не должны рассматриваться как конкуренты. Скорее, они могут дополнять друг друга.

Хотя ИИ демонстрирует огромный потенциал, это не обязательно означает конец квантовым вычислениям. Некоторые задачи, такие как симуляция сложных квантовых систем или решение NP-трудных задач, могут оказаться за пределами возможностей ИИ на классических компьютерах.

Для России важно сосредоточиться на развитии собственных технологий в области ИИ и квантовых вычислений, чтобы не зависеть от внешних разработок и конкурировать на глобальном уровне. Это требует значительных инвестиций в науку, поддержку отечественных специалистов и создание благоприятных условий для стартапов. Только опережающее развитие научной базы и технологической инфраструктуры позволит стране сохранить суверенитет и стратегическое преимущество.

@ano_cbst



group-telegram.com/ANO_CBST/336
Create:
Last Update:

Может ли искусственный интеллект сделать квантовые вычисления ненужными?

Недавние достижения в области ИИ ставят под сомнение необходимость квантовых вычислений в ближайшем будущем. Несмотря на то что квантовые компьютеры обещают революционные изменения в ряде отраслей, их развитие сталкивается с серьезными техническими и экономическими препятствиями. Между тем ИИ и машинное обучение уже сегодня демонстрируют способность решать сложные задачи на существующих архитектурах, что потенциально может снизить потребность в квантовых системах.

Квантовые компьютеры основываются на принципах квантовой механики и используют кубиты вместо традиционных битов. Это позволяет им одновременно обрабатывать огромное количество данных и решать задачи, которые для классических компьютеров остаются сложными или даже нерешаемыми.

Однако квантовые технологии находятся на ранней стадии развития и сталкиваются с рядом проблем:

1. Сложность создания и управления системами:
Квантовые компьютеры требуют поддержания сверхнизких температур, чтобы избежать потери квантовой когерентности.

2. Высокая стоимость:
Разработка и эксплуатация квантовых компьютеров обходятся чрезвычайно дорого, что ограничивает их доступность.

3. Ограниченная функциональность:
Современные квантовые устройства пока что пригодны только для выполнения узкого круга задач, таких как факторизация чисел или моделирование молекул.

По данным MIT Technology Review, быстрый прогресс в области применения ИИ для моделирования физических и химических систем может сделать квантовые компьютеры менее необходимыми. Современные алгоритмы машинного обучения уже достигают впечатляющих результатов в задачах, ранее считавшихся прерогативой квантовых технологий.

Примеры:

1. Симуляция сложных систем. ИИ способен точно моделировать молекулы и материалы, оптимизируя их структуру для нужд химии, фармацевтики и материаловедения. Ранее такие задачи предполагалось решать на квантовых компьютерах.

2. Оптимизация процессов. С помощью ИИ возможно эффективно решать задачи оптимизации и прогнозирования, такие как построение логистических цепочек или разработка новых лекарств.

3. Ускорение вычислений. ИИ уже сейчас обеспечивает значительное ускорение классических вычислений за счёт использования специализированных алгоритмов.

ИИ уже широко внедрен в существующую инфраструктуру, тогда как квантовые технологии требуют создания совершенно новых систем. Алгоритмы ИИ могут работать на современных суперкомпьютерах и даже облачных платформах. Это делает их значительно более доступными для широкого круга пользователей. Использование ИИ требует значительно меньших финансовых затрат по сравнению с разработкой и эксплуатацией квантовых систем. Алгоритмы машинного обучения могут быть адаптированы для различных отраслей, в то время как квантовые системы пока что имеют ограниченную область применения.

Некоторые специалисты считают, что ИИ может "съесть обед квантовых вычислений". Это метафорическое выражение подчеркивает, что ИИ способен занять ту нишу, для которой разрабатывались квантовые технологии. Например, использование ИИ в моделировании химических реакций уже ставит под сомнение необходимость квантовых компьютеров в этом направлении.

Однако есть мнение, что ИИ и квантовые компьютеры не должны рассматриваться как конкуренты. Скорее, они могут дополнять друг друга.

Хотя ИИ демонстрирует огромный потенциал, это не обязательно означает конец квантовым вычислениям. Некоторые задачи, такие как симуляция сложных квантовых систем или решение NP-трудных задач, могут оказаться за пределами возможностей ИИ на классических компьютерах.

Для России важно сосредоточиться на развитии собственных технологий в области ИИ и квантовых вычислений, чтобы не зависеть от внешних разработок и конкурировать на глобальном уровне. Это требует значительных инвестиций в науку, поддержку отечественных специалистов и создание благоприятных условий для стартапов. Только опережающее развитие научной базы и технологической инфраструктуры позволит стране сохранить суверенитет и стратегическое преимущество.

@ano_cbst

BY ЦБСТ




Share with your friend now:
group-telegram.com/ANO_CBST/336

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The regulator took order for the search and seizure operation from Judge Purushottam B Jadhav, Sebi Special Judge / Additional Sessions Judge. Also in the latest update is the ability for users to create a unique @username from the Settings page, providing others with an easy way to contact them via Search or their t.me/username link without sharing their phone number. Since its launch in 2013, Telegram has grown from a simple messaging app to a broadcast network. Its user base isn’t as vast as WhatsApp’s, and its broadcast platform is a fraction the size of Twitter, but it’s nonetheless showing its use. While Telegram has been embroiled in controversy for much of its life, it has become a vital source of communication during the invasion of Ukraine. But, if all of this is new to you, let us explain, dear friends, what on Earth a Telegram is meant to be, and why you should, or should not, need to care. Given the pro-privacy stance of the platform, it’s taken as a given that it’ll be used for a number of reasons, not all of them good. And Telegram has been attached to a fair few scandals related to terrorism, sexual exploitation and crime. Back in 2015, Vox described Telegram as “ISIS’ app of choice,” saying that the platform’s real use is the ability to use channels to distribute material to large groups at once. Telegram has acted to remove public channels affiliated with terrorism, but Pavel Durov reiterated that he had no business snooping on private conversations. The last couple days have exemplified that uncertainty. On Thursday, news emerged that talks in Turkey between the Russia and Ukraine yielded no positive result. But on Friday, Reuters reported that Russian President Vladimir Putin said there had been some “positive shifts” in talks between the two sides.
from ru


Telegram ЦБСТ
FROM American