Telegram Group & Telegram Channel
LLM знают, чего именно они не знают

Эх, когда-нибудь я допишу большой хабр про механистическую интерпретируемость и Sparse Auto-Encoders (SAE), а пока, будет только небольшой разбор крутейшей свежей статьи от отцов-основателей этой области Javier Ferrando, Neel Nanda, et al. про самоконтроль галлюцинаций в LLM.

Можно ли определить заранее, выдаст модель галлюцинацию на какой-то промпт или ответит осознанно? Похоже, иногда это возможно. Авторы обнаружили, что когда LLM видит какую-то сущность в запросе (имя человека, название песни и тп), то внутри неё активируются механизмы для проверки своих же знаний, что-то вроде «а есть ли у меня в весах что-то про Steve Jobs или нет?». И обычно у LLM это работает довольно неплохо, в активациях есть линейные направления (латенты SAE), которые отвечают за это разделение «известная/ неизвестная» сущность. На картинке к посту можно видеть, как активируются признаки на реальном и вымышленном текстах.

Оказалось, что этот же латент отвечает и за «refusal» поведение, когда модель/ассистент отказывается отвечать на запрос и бросается заглушкой вроде «As a large language model I don’t have knowledge about blablabla». Подавление неправильного ответа происходит через блокирование специализированной головы внимания, отвечающей за извлечение знаний о сущностях (да, у каждой LLM есть отдельная голова на каком-то конкретном слое для этого). А главное, контролируя это латентное направление в языковых моделях, можно вручную регулировать баланс между галлюцинациями и отказами отвечать.

Все эксперименты проводились на Gemma 2B и 9B, так как для каждого их слоя обучены и опубликованы SAE — Gemma Scope.

Статья



group-telegram.com/abstractDL/303
Create:
Last Update:

LLM знают, чего именно они не знают

Эх, когда-нибудь я допишу большой хабр про механистическую интерпретируемость и Sparse Auto-Encoders (SAE), а пока, будет только небольшой разбор крутейшей свежей статьи от отцов-основателей этой области Javier Ferrando, Neel Nanda, et al. про самоконтроль галлюцинаций в LLM.

Можно ли определить заранее, выдаст модель галлюцинацию на какой-то промпт или ответит осознанно? Похоже, иногда это возможно. Авторы обнаружили, что когда LLM видит какую-то сущность в запросе (имя человека, название песни и тп), то внутри неё активируются механизмы для проверки своих же знаний, что-то вроде «а есть ли у меня в весах что-то про Steve Jobs или нет?». И обычно у LLM это работает довольно неплохо, в активациях есть линейные направления (латенты SAE), которые отвечают за это разделение «известная/ неизвестная» сущность. На картинке к посту можно видеть, как активируются признаки на реальном и вымышленном текстах.

Оказалось, что этот же латент отвечает и за «refusal» поведение, когда модель/ассистент отказывается отвечать на запрос и бросается заглушкой вроде «As a large language model I don’t have knowledge about blablabla». Подавление неправильного ответа происходит через блокирование специализированной головы внимания, отвечающей за извлечение знаний о сущностях (да, у каждой LLM есть отдельная голова на каком-то конкретном слое для этого). А главное, контролируя это латентное направление в языковых моделях, можно вручную регулировать баланс между галлюцинациями и отказами отвечать.

Все эксперименты проводились на Gemma 2B и 9B, так как для каждого их слоя обучены и опубликованы SAE — Gemma Scope.

Статья

BY AbstractDL




Share with your friend now:
group-telegram.com/abstractDL/303

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

This ability to mix the public and the private, as well as the ability to use bots to engage with users has proved to be problematic. In early 2021, a database selling phone numbers pulled from Facebook was selling numbers for $20 per lookup. Similarly, security researchers found a network of deepfake bots on the platform that were generating images of people submitted by users to create non-consensual imagery, some of which involved children. Elsewhere, version 8.6 of Telegram integrates the in-app camera option into the gallery, while a new navigation bar gives quick access to photos, files, location sharing, and more. The message was not authentic, with the real Zelenskiy soon denying the claim on his official Telegram channel, but the incident highlighted a major problem: disinformation quickly spreads unchecked on the encrypted app. False news often spreads via public groups, or chats, with potentially fatal effects. "For Telegram, accountability has always been a problem, which is why it was so popular even before the full-scale war with far-right extremists and terrorists from all over the world," she told AFP from her safe house outside the Ukrainian capital.
from ru


Telegram AbstractDL
FROM American